Featured Research

from universities, journals, and other organizations

New Transistor Laser Could Lead To Faster Signal Processing

Date:
November 29, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
Researchers at the University of Illinois at Urbana-Champaign have demonstrated the laser operation of a heterojunction bipolar light-emitting transistor. The scientists describe the fabrication and operation of their transistor laser in the Nov. 15 issue of the journal Applied Physics Letters.

The transistor laser light beam with a infrared wavelength labeled "hv" at the top is captured by CCD camera. The contact probes (dark shadow) on the Emitter, Base and Collector.
Credit: Courtesy Milton Feng/Nick Holonyak

CHAMPAIGN, Ill. — Researchers at the University of Illinois at Urbana-Champaign have demonstrated the laser operation of a heterojunction bipolar light-emitting transistor. The scientists describe the fabrication and operation of their transistor laser in the Nov. 15 issue of the journal Applied Physics Letters.

Related Articles


“By incorporating quantum wells into the active region of a light-emitting transistor, we have enhanced the electrical and optical properties, making possible stimulated emission and transistor laser operation,” said Nick Holonyak Jr., a John Bardeen Professor of Electrical and Computer Engineering and Physics at Illinois.

The same principle making possible the transistor – negative and positive charge annihilation in the active region (the source of one of the transistor’s three currents) – has been extended and employed to make a transistor laser, he said. Holonyak invented the first practical light-emitting diode and the first semiconductor laser to operate in the visible spectrum.

Unlike a light-emitting diode, which sends out broadband, incoherent light, the transistor laser emits a narrow, coherent beam. Modulated at transistor speeds, the laser beam could be sent through an optical fiber as a high-speed signal.

“This is a true, three-terminal laser, with an electrical input, electrical output and an optical output, not to mention a coherent optical output,” said Milton Feng, the Holonyak Professor of Electrical and Computer Engineering at Illinois. “It is a device that operates simultaneously as a laser and as a transistor.” Feng is credited with creating the world’s fastest bipolar transistor, a device that operates at a frequency of 509 gigahertz.

At laser threshold – where the light changes from spontaneous emission to stimulated emission – the transistor gain decreases sharply, but still supports three-port operation, Feng said. “The electrical signal goes down, but the optical signal goes up.”

Earlier this year, Feng and Holonyak reported their discovery of a three-port, light-emitting transistor. Building upon that work, the researchers fabricated the transistor laser in the university’s Micro and Nanotechnology Laboratory. Unlike traditional transistors, which are built from silicon and germanium, the transistor laser is made from indium gallium phosphide, gallium arsenide and indium gallium arsenide, but can employ other materials in this family (the so-called III-V compounds).

“This work is still very much in its infancy,” Holonyak said. “There is much more to be learned, including how to separate and optimize the transistor laser output between electrical signals and light signals.”

Down the road, ultra-fast transistor lasers could extend the modulation bandwidth of a semiconductor light source from 20 gigahertz to more than 100 gigahertz. Used as optoelectronic interconnects, transistor lasers could facilitate faster signal processing, higher speed devices and large-capacity seamless communications, as well as a new generation of higher performance electrical and optical integrated circuits.

Co-authors of the paper with Feng and Holonyak are postdoctoral research associate Gabriel Walter and graduate research assistant Richard Chan. The Defense Advanced Research Projects Agency funded the work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "New Transistor Laser Could Lead To Faster Signal Processing." ScienceDaily. ScienceDaily, 29 November 2004. <www.sciencedaily.com/releases/2004/11/041123210820.htm>.
University Of Illinois At Urbana-Champaign. (2004, November 29). New Transistor Laser Could Lead To Faster Signal Processing. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2004/11/041123210820.htm
University Of Illinois At Urbana-Champaign. "New Transistor Laser Could Lead To Faster Signal Processing." ScienceDaily. www.sciencedaily.com/releases/2004/11/041123210820.htm (accessed November 1, 2014).

Share This



More Matter & Energy News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU, Russia, Ukraine Seal Breakthrough Gas Accord

EU, Russia, Ukraine Seal Breakthrough Gas Accord

AFP (Oct. 31, 2014) Russia agrees to resume gas deliveries to war-torn Ukraine through the winter in an EU-brokered, multi-billion dollar deal signed by the three parties in Brussels. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Relief After “gas War” Is Averted

Relief After “gas War” Is Averted

Reuters - Business Video Online (Oct. 31, 2014) A gas war between Russia and Ukraine has been averted. But as Hayley Platt reports a deal was only reached after Kiev's western creditors agreed to partly funding the deal. Video provided by Reuters
Powered by NewsLook.com
Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins