Featured Research

from universities, journals, and other organizations

Ultrafast Laser Speeds Up Quest For Atomic Control

Date:
November 29, 2004
Source:
National Institute Of Standards And Technology
Summary:
It's the scientific equivalent of having your cake and eating it too. A team of researchers from JILA, a joint institute of the Commerce Department's National Institute of Standards and Technology and the University of Colorado at Boulder, has developed an efficient, low-cost way to measure the energy levels of atoms in a gas with extremely high accuracy, and simultaneously detect and control transitions between the levels as fast as they occur.

Just as a satellite requires a boost of power to change from one Earth orbit to a higher one, electrons require an energy boost (in quantum steps) to change from one orbital pattern around the nucleus to another. JILA researchers used pulses of ultrafast laser light to boost the outer electron in rubidum atoms to higher, "excited" levels, then detected the energy released by the atoms in the form of fluorescent light as they "relaxed" back to their natural state. This three-dimensional plot shows changes in the intensity of the light emitted by the atoms in 300 microseconds. The JILA technique should allow scientists to measure and control these "transitions" between atomic energy levels much more efficiently than with conventional methods. (Graphic courtesy of National Institute Of Standards And Technology)

It's the scientific equivalent of having your cake and eating it too. A team of researchers from JILA, a joint institute of the Commerce Department's National Institute of Standards and Technology and the University of Colorado at Boulder, has developed an efficient, low-cost way to measure the energy levels of atoms in a gas with extremely high accuracy, and simultaneously detect and control transitions between the levels as fast as they occur. The technique is expected to have practical applications in many fields including astrophysics, quantum computing, chemical analysis, and chemical synthesis.

Described in the Nov. 18 online issue of Science Express,* the method uses ultrafast pulses of laser light like a high speed movie camera to record in real-time the energy required to boost an atom's outer electrons from one orbital pattern to another. The pulses are so short that scientists can track precisely the fraction of atoms in each energy state and how those populations change with time. Moreover, the atoms respond to subsequent laser pulses cumulatively--the energy adds up over time--which allows fine-tuning to affect specific orbital patterns of interest with a much lower power laser than usual.

All of chemistry depends on the configurations of these outer electrons. The technique promises to make it easier for scientists to systematically understand the radiation "signatures" (or spectra) given off by atoms and molecules as their electrons jump between different energy levels. Ultimately, it should allow improved control of the complex chain of events that combines atoms into desired compounds.

The JILA team is a world leader in applying so-called "frequency combs" to practical science problems. The laser system used in the current work emits a hundred thousand different infrared frequencies at once in individual pulses lasting just femtoseconds (quadrillionths of a second). The JILA researchers used the laser to precisely study the electron energy levels within an ultracold gas of rubidium atoms. The ability to probe atoms with many different laser frequencies simultaneously and to monitor atom responses in real time should allow scientists to study and control systems in a vastly more efficient and precise manner.

###

* A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye. 2004. "United time-frequency spectroscopy for dynamics and global structure." Science Express. Nov. 18.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "Ultrafast Laser Speeds Up Quest For Atomic Control." ScienceDaily. ScienceDaily, 29 November 2004. <www.sciencedaily.com/releases/2004/11/041123212422.htm>.
National Institute Of Standards And Technology. (2004, November 29). Ultrafast Laser Speeds Up Quest For Atomic Control. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2004/11/041123212422.htm
National Institute Of Standards And Technology. "Ultrafast Laser Speeds Up Quest For Atomic Control." ScienceDaily. www.sciencedaily.com/releases/2004/11/041123212422.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins