Featured Research

from universities, journals, and other organizations

New Model Of Cancer Syndrome Could Lead To Treatments

Date:
December 31, 2004
Source:
Massachusetts Institute Of Technology
Summary:
Scientists from MIT's Center for Cancer Research have developed a new mouse model that closely resembles Li-Fraumeni Syndrome (LFS) in humans, a syndrome that predisposes those affected to a broad range of cancers. Some 95 percent of LFS patients develop cancer by age 65.

A colon cancer cell circulating in the blood stream of an LFS mouse is in the process of dividing and contains substantially more than the normal number chromosomes, a feature that is characteristic of tumor cells. Image courtesy of MIT Center for Cancer Research

Scientists from MIT's Center for Cancer Research have developed a new mouse model that closely resembles Li-Fraumeni Syndrome (LFS) in humans, a syndrome that predisposes those affected to a broad range of cancers. Some 95 percent of LFS patients develop cancer by age 65.

This work, which was reported in the Dec. 17 issue of Cell, could lead to a treatment for LFS and aid in the development of treatments for other cancers.

The research shows that a single point mutation in the tumor suppressor gene p53 yields a mouse that develops a broad tumor spectrum reminiscent of LFS. Although LFS is a rare genetic disease, affecting fewer than 400 families worldwide, the p53 gene is very commonly mutated in tumors unrelated to LFS. Mutations in p53 are detected in more than 50 percent of all human tumors, such as colon, breast, skin, bladder and many cancers of the digestive tract. Consequently, the development of a therapy for LFS specifically targeted at p53 has the potential to be applied to a wide range of cancers.

"The LFS mouse strains, which have been many years in the making, will be extremely valuable in understanding how the common mutations in p53 contribute to tumor formation," said Tyler Jacks, David H. Koch professor of biology, director of the Center for Cancer Research and leader of the MIT team. "We expect these strains will also help us determine how to specifically treat p53 mutant tumors," explained Jacks, who is also an Investigator for the Howard Hughes Medical Institute.

Understanding the genetic basis of disease is the key to developing effective therapies in the fight against cancer, and mouse models of human cancer have played an integral role in research. However, previous attempts to create accurate mouse models of LFS by completely inactivating p53 were unsuccessful because the mice did not develop the wide range of tumors seen in human LFS patients.

In this study, two different mutations in p53 that are commonly found in human tumors were tested in the mouse. These mutations do not lead to deletion of p53, but have more subtle effects. The authors found that mice that possessed either of the two mutations in p53 developed more tumors and more different types of tumors than do mice completely lacking p53.

"By knocking out p53, the mice did not develop as many types of tumors as is typically seen with LFS," said Kenneth Olive, lead author of the paper and a graduate student in biology. "Therefore, it is important that we understand what it is about these subtle mutations that is different from simply inactivating the whole gene. More generally, if we are to truly understand human cancer, it is important that we study not just any mutation, but the right mutation."

Other MIT authors of the paper are David Tuveson, now an assistant professor at the University of Pennsylvania, biology undergraduates Zachary Ruhe and Bob Yin, and former research technician Nicholas Willis and research affiliate Denise Crowley of the Center for Cancer Research. Roderick Bronson of Tufts University School of Veterinary Medicine also contributed to this work.

The work is supported by the Howard Hughes Medical Institute and the National Cancer Institute Mouse Models of Human Cancer Consortium. Support also comes from a Koch Graduate Fellowship and a National Institutes of Health Training Grant.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "New Model Of Cancer Syndrome Could Lead To Treatments." ScienceDaily. ScienceDaily, 31 December 2004. <www.sciencedaily.com/releases/2004/12/041219170007.htm>.
Massachusetts Institute Of Technology. (2004, December 31). New Model Of Cancer Syndrome Could Lead To Treatments. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2004/12/041219170007.htm
Massachusetts Institute Of Technology. "New Model Of Cancer Syndrome Could Lead To Treatments." ScienceDaily. www.sciencedaily.com/releases/2004/12/041219170007.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins