Featured Research

from universities, journals, and other organizations

UCSC Engineers Develop Assistive Technologies For The Blind

Date:
December 29, 2004
Source:
University Of California, Santa Cruz
Summary:
Researchers at the University of California, Santa Cruz, are developing new assistive technologies for the blind based on advances in computer vision that have emerged from research in robotics. A "virtual white cane" is one of several prototype tools for the visually impaired developed by Roberto Manduchi, an assistant professor of computer engineering, and his students.

Researchers at the University of California, Santa Cruz, are developing new assistive technologies for the blind based on advances in computer vision that have emerged from research in robotics. A "virtual white cane" is one of several prototype tools for the visually impaired developed by Roberto Manduchi, an assistant professor of computer engineering, and his students.

Related Articles


The traditional white cane is still the most common mobility device for the blind. It is a simple and effective tool that enables users to extend their sense of touch and "preview" the area ahead of them as they walk. But the long, rigid cane is not well-suited to all situations or all users.

Manduchi's high-tech alternative is a laser-based range-sensing device about the size of a flashlight. A laser, much like the one in an ordinary laser pointer, is combined with a digital camera and a computer processor that analyzes and integrates spatial information as the user moves the device back and forth over a scene. The user receives feedback about the scene in the form of audio signals, and an additional tactile interface is being developed for future prototypes.

"In the audio signal, the pitch corresponds to distance, and there are also special sounds to indicate features such as a curb, step, or drop-off," Manduchi said.

Dan Yuan, a graduate student working with Manduchi on the virtual white cane project, built the initial prototype. The UCSC researchers are collaborating with the Smith-Kettlewell Eye Research Institute, a nonprofit research institute in San Francisco (www.ski.org), on the virtual white cane and other projects.

"The people at Smith-Kettlewell are helping us to understand the real needs of the blind, and they have blind engineers who test the systems we develop," Manduchi said.

In another project, for example, Manduchi is working with Smith-Kettlewell scientist James Coughlan on a system that uses a compact device with a camera to detect and gather information from small labels or tags placed in key locations. For example, the tags might help a blind person locate a doctor's office in a medical building. The device would only work where tags have been placed in the environment, but the tags--small colored labels with bar codes on them--are very inexpensive and require no maintenance.

"A blind person staying at a hotel could put a sticker on their door so they could easily find their way back to the room," Manduchi said. "Or I could put tags here in the Engineering 2 Building to help a blind visitor find my office."

The tags could be detected by a handheld computer with a simple camera, or even a camera phone, he said. Michi Mutsuzaki, a UCSC undergraduate working in Manduchi's lab, used a small handheld computer with a camera to develop a protoype device that can detect the colored targets.

A third collaboration with Smith-Kettlewell is a project Manduchi refers to as "MapQuest for the blind," in reference to the Internet map site MapQuest.com.

"The problem is how to enable a blind person to explore a map," Manduchi said. "The current devices are braille maps, but those require a special printer. We want to create a feedback environment to enable a blind person to explore a map on the computer."

The feedback would be provided by a "force-feedback mouse," which vibrates to produce a variety of physical sensations the user can feel as the pointer moves across features on a computer screen. These devices are readily available, so the project involves creating software that will enable the blind to use a force-feedback mouse to "feel" their way through a map.

Michele Clarke, an undergraduate at St. Mary's University of Minnesota, began working with Manduchi on this project last summer as a participant in UCSC's Summer Undergraduate Research Fellowship in Information Technology (SURF-IT) program, funded by the National Science Foundation. She is continuing to work on the project at St. Mary's during the current academic year.

Before coming to UC Santa Cruz in 2001, Manduchi worked for several years at NASA's Jet Propulsion Laboratory, applying computer vision technology to autonomous robotic systems.

"It is a natural evolution from helping a robot drive around to helping a blind person navigate their environment," he said.


Story Source:

The above story is based on materials provided by University Of California, Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Santa Cruz. "UCSC Engineers Develop Assistive Technologies For The Blind." ScienceDaily. ScienceDaily, 29 December 2004. <www.sciencedaily.com/releases/2004/12/041219194156.htm>.
University Of California, Santa Cruz. (2004, December 29). UCSC Engineers Develop Assistive Technologies For The Blind. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2004/12/041219194156.htm
University Of California, Santa Cruz. "UCSC Engineers Develop Assistive Technologies For The Blind." ScienceDaily. www.sciencedaily.com/releases/2004/12/041219194156.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins