Featured Research

from universities, journals, and other organizations

Observation Of Material Circling A Supermassive Black Hole

Date:
January 14, 2005
Source:
Particle Physics & Astronomy Research Council
Summary:
Astronomers from the University of Oxford and around the world have observed clumps of X-ray-emitting gas whipping around a black hole at 33,000 kilometres per second, one-tenth the speed of light.

Still image from an animation depicting three hot blobs of matter orbiting a black hole. If placed in our Solar System, this black hole would appear like a dark abyss spread out nearly as wide as Mercury's orbit. And the three blobs (each as large as the Sun) would be as far out as Jupiter. They orbit the black hole in a lightning-quick 20,000 miles per second, over a tenth of the speed of light. Click on image to view animation. Credit: NASA/Dana Berry, SkyWorks Digital

Astronomers from the University of Oxford and around the world have observed clumps of X-ray-emitting gas whipping around a black hole at 33,000 kilometres per second, one-tenth the speed of light.

The observation marks the first time scientists have been able to trace individual blobs of gas on a complete journey around a massive black hole, and provides crucial measurements that have long been missing from black hole studies: both an orbital period and an orbital speed. These have allowed the astronomers to calculate a lower limit to the black hole mass of 300,000 times that of our Sun.

The observation was made with the EPIC X-ray cameras on the European Space Agency's XMM-Newton satellite, and the team comprises Dr Jane Turner, of NASA's Goddard Space Flight Center and University of Maryland Baltimore County, Dr Lance Miller of Oxford University's Department of Physics, Dr James Reeves (NASA/GSFC) and Dr Ian George (NASA/GSFC and UMBC).

Dr Lance Miller said: 'If the black hole in question were placed in our Solar System, it would be as wide as Mercury's orbit, with the three clumps of matter detected orbiting as far out as Jupiter. They orbit the black hole in a lightning-quick 27 hours, compared to the 12 years it takes Jupiter to orbit the Sun.'

The EPIC instrument (European Photon Imaging Camera) used to make these observations was built by four countries, led by the University of Leicester where Professor Martin Turner is the Principal Investigator.

Professor Turner said: "When we designed the EPIC instrument for XMM-Newton, we hoped that it could be used to study the matter orbiting a black hole under its intense gravitational field. It is gratifying that scientists from the UK and the United States are able to do just that."

Black holes are regions in space so dense that gravity prevents all matter and light from escaping. What scientists see is not the black hole itself but rather the light emitted close to it as matter falls towards the black hole and heats to high temperatures. The scientists observed a well-known galaxy named Markarian 766, about 170 million light years away. The black hole there is relatively small, although still several million times as massive as our Sun, and highly active in swallowing gas and matter.

Matter funnels into this black hole like water swirling down a drain, forming what is called an accretion disk. Flares erupt on this disk through an unknown process. Dr Miller said: 'Calculating the flares' speeds and the black hole mass was straightforward, based on Doppler shifting, the phenomenon by which light appears to rise in energy as an object moves towards us and then fall in energy as it moves away. The 'eeeeeeyyoool' sound of a passing car on a motorway is a similar phenomenon, and Doppler shift is measured in the radar guns that police use to catch speeders.

'We think we're viewing the accretion disk at a slightly tilted angle, and we see the light from each of these flares rise and fall in energy as they orbit the black hole. With a measured velocity and orbital period, we could determine the black hole mass using relatively simple Newtonian physics.'

Two factors made the measurement possible. First, the scientists observed particularly persistent flares for nearly 27 hours. Second, no telescope before XMM-Newton has had the light-collecting power to allow for a comparison of energy over time.

The observation confirms an XMM-Newton result announced by a European team in September that some scientists had found speculative: that something as detailed as an orbital period could be detected with the current generation of telescopes. The results show that scientists, given long observation times, are now able to make measurements of black holes to test theories of how such extreme objects form at the centres of galaxies, and how they become active in swallowing gas and other matter.


Story Source:

The above story is based on materials provided by Particle Physics & Astronomy Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Particle Physics & Astronomy Research Council. "Observation Of Material Circling A Supermassive Black Hole." ScienceDaily. ScienceDaily, 14 January 2005. <www.sciencedaily.com/releases/2005/01/050111182222.htm>.
Particle Physics & Astronomy Research Council. (2005, January 14). Observation Of Material Circling A Supermassive Black Hole. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2005/01/050111182222.htm
Particle Physics & Astronomy Research Council. "Observation Of Material Circling A Supermassive Black Hole." ScienceDaily. www.sciencedaily.com/releases/2005/01/050111182222.htm (accessed July 22, 2014).

Share This




More Space & Time News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) — A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) — NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) — Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) — Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins