Featured Research

from universities, journals, and other organizations

Controlling Protein Diversity

Date:
February 7, 2005
Source:
Baylor College Of Medicine
Summary:
Proteins called coactivators control the process by which a single gene can initiate production of several proteins in a process called alternative splicing, said Baylor College of Medicine researchers in a report that appears in the journal Molecular Cell.

February 3, 2005 -- Proteins called coactivators control the process by which a single gene can initiate production of several proteins in a process called alternative splicing, said Baylor College of Medicine researchers in a report that appears in today's issue of the journal Molecular Cell.

Related Articles


"A major question in biology today is how human cells with 30,000 genes produce at least 120,000 proteins," said Dr. Bert O'Malley, chair of the BCM department of molecular and cellular biology. The answer is a process called alternative splicing in which certain information from a gene is left out or included, changing the format of the resulting protein.

In other words, if the information in a gene is like the elements of a computer code, leaving out some of the code results in a very different program than what would have resulted if all the components had been included or different parts had been left out. In this instance, leaving out part of the gene changes the protein.

"The question is, 'How is this controlled?'" said O'Malley.

He and his colleagues have shown in previous studies that hormones like estrogen and progesterone can change the amounts of proteins made by their target genes. When hormone binds to receptors inside the cells, they are activated to seek out target genes. They then recruit the coactivators – in this case CAPERα and CAPERβ. These coactivators not only cause the gene to begin the process that results in protein production, they also determine what kind of RNA (a kind of genetic template for the protein) is made as well as what kind of protein results.

"This subgroup of coactivators, when brought to the gene, can enhance the amount of RNA made off the gene or the quantitative expression of that gene as well as qualitatively change what comes off the gene in terms of what protein is made," said O'Malley. These coactivators are unusual in that they can both control alternative splicing that results in different proteins being made as well as the production of RNA.

###

Others who participated in the research include Drs. Susan M. Berget, Dennis H. Dowhan, Eugene P. Hong, Didier Auboeuf, Andrew P. Dennis and Michelle M. Wilson of the BCM departments of molecular and cellular biology and biochemistry and molecular biology. This research was supported by grants from the National Institutes of Health, the National Institutes of Child Health and Human Development, the National Institute of Diabetes, Digestive and Kidney Diseases and the Welch Foundation.


Story Source:

The above story is based on materials provided by Baylor College Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Baylor College Of Medicine. "Controlling Protein Diversity." ScienceDaily. ScienceDaily, 7 February 2005. <www.sciencedaily.com/releases/2005/02/050204213546.htm>.
Baylor College Of Medicine. (2005, February 7). Controlling Protein Diversity. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2005/02/050204213546.htm
Baylor College Of Medicine. "Controlling Protein Diversity." ScienceDaily. www.sciencedaily.com/releases/2005/02/050204213546.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins