Featured Research

from universities, journals, and other organizations

Intermetallic Mystery Solved With Atomic Resolution Microscope

Date:
February 19, 2005
Source:
Brown University
Summary:
Intermetallics could be the key to faster jets and more efficient car engines. But these heat-resistant, lightweight compounds have stumped scientists for decades. Why do so many break so easily? A team from Brown University, Oak Ridge National Laboratory, and UES Inc. used the world’s most powerful electron microscope to see, for the first time, atomic details that may provide the answer for the most common class of intermetallics. Their results – which could open the door for new materials for commercial use – are published in the current issue of Science.

Atomic resolution Z-contrast image from the world’s most powerful microscope of a non-defective region of Cr2Hf. In this view, the hafnium atoms appear yellow and the chromium atoms are red.
Credit: Image : Sharvan Kumar

PROVIDENCE, RI — Intermetallics can withstand searing heat and are often lightweight. These properties intrigue the aerospace, defense, energy and automotive industries, which are experimenting with this class of materials in hopes of building high-performance jet engines, improved rocket motors and missile components, more efficient steam turbines and better car engine valves.

Related Articles


Many intermetallics, however, break easily. These compounds are typically stronger than simple metals at high temperatures. Yet they are almost as fragile as ceramics at room temperature. This fragility limits their commercial use.

But why do most intermetallics shatter? How can that be prevented?

In a new report in Science, researchers from Brown University, Oak Ridge National Laboratory and UES Inc. for the first time describe detailed atomic arrangements in Laves phases – the most common class of intermetallics. Their discovery may be the first step in explaining the origin of this brittleness in some of these compounds.

“It has long been known that a dislocation, or crystal defect, moves when force is applied to a material. The easier it is to move this defect, the less brittle the material will be,” said Sharvan Kumar, professor of engineering at Brown University, who has studied Laves phases for more than a decade. “In materials with complex crystal structures, such as Laves phases, the atomic arrangement around these defects, and how these defects move, are not well understood.”

In the 1950s, a concept called “synchroshear” was proposed to explain how this defect moved in many complex structures. Under that theory, this movement is accomplished by coordinated shifting of atoms in two adjacent atomic layers. This synchronized movement is necessary to prevent atoms in one layer from colliding with atoms in the neighboring layer.

But because atoms are so tightly packed in compounds with complex structures, as they are in Laves phases, the theory could never be proven. There wasn’t a microscope powerful enough to show, in clear detail, how the atoms behaved.

Enter Matthew Chisholm, a staff researcher at Oak Ridge National Laboratory. Chisholm uses a unique Z-contrast scanning transmission electron microscope (STEM) to study defects in materials. The microscope was recently outfitted with an aberration-correction system, which corrects errors produced by imperfections in the electron lens. The system doubled the microscope’s resolving ability, making it the most powerful electron microscope on the planet.

Even though atoms in the test material – the Laves phase Cr2Hf – were spaced less than one ten-billionth of a meter away, the microscope produced crisp images of atoms arranged in tidy columns. Scientists put sheared material in the microscope, saw the defects and analyzed them.

“Aberration-correction combined with direct Z-contrast imaging produces an ideal technique to study unknown defect structures,” Chisholm said. “The resulting images have clearly shown for the first time that the accepted dislocation models built up over years of research on simple metals do not work in this more complex material.”

Kumar, who coordinated the project, said careful examination confirmed that synchroshear did indeed occur. “This is a first in science,” he said.

In the case of Laves phases, it is important to understand defect structures. With this knowledge, materials scientists may be able to identify methods that enhance their motion – and create intermetallic compounds that resist shattering.

The study illustrates the utility of Oak Ridge’s STEM in studying a variety of crystal structures and defects. The findings could be applied to materials with other complex structures, such as other classes of intermetallics as well as ceramics, inorganic salts and others.

The late Peter Hazzledine of UES Inc., a materials science research and development firm based in Dayton, Ohio, helped analyze and interpret the experimental results. Hazzledine was a leading authority on dislocation theory.

The U.S. Department of Energy’s Office of Basic Energy Sciences, the National Science Foundation-sponsored Materials Research Science and Engineering Center at Brown University, and the U.S Air Force Research Laboratory funded the work.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Intermetallic Mystery Solved With Atomic Resolution Microscope." ScienceDaily. ScienceDaily, 19 February 2005. <www.sciencedaily.com/releases/2005/02/050211082039.htm>.
Brown University. (2005, February 19). Intermetallic Mystery Solved With Atomic Resolution Microscope. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2005/02/050211082039.htm
Brown University. "Intermetallic Mystery Solved With Atomic Resolution Microscope." ScienceDaily. www.sciencedaily.com/releases/2005/02/050211082039.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins