Featured Research

from universities, journals, and other organizations

Tiny Superconductors Withstand Stronger Magnetic Fields

Date:
February 21, 2005
Source:
University Of Illinois At Urbana-Champaign
Summary:
Ultrathin superconducting wires can withstand stronger magnetic fields than larger wires made from the same material, researchers now report. This finding may be useful for technologies that employ superconducting magnets, such as magnetic resonance imaging.

The diagram shows the principle of molecular templating, i.e. a method of nanofabrication used to make superconducting nanowires with molecular dimensions. The substrate is a Si wafer with thin films of silicon oxide (SiO2) and silicon nitride (SiN) deposited over it. A 100 nm wide trench is formed in the SiN-SiO2 bilayer. Nanotubes are placed across the trench from a solution. The sample then is sputter-coated with a desired material, i.e. a superconducting amorphous alloy in Bezryadin's case. The inset shows a scanning electron micrograph of a nanowire produced by molecular templating.
Credit: Photo by Kwame Ross

CHAMPAIGN, Ill. -- Ultrathin superconducting wires can withstand stronger magnetic fields than larger wires made from the same material, researchers now report. This finding may be useful for technologies that employ superconducting magnets, such as magnetic resonance imaging.

As described in the Jan. 14 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have created high-quality superconducting wires with molecular dimensions, and measured their behavior in magnetic fields of various strengths. The observational results have confirmed that theories developed for bulk superconductors also apply to molecular-scale superconductors.

"Our experimental results show an excellent agreement with the theory of pair-breaking perturbations, even at high magnetic fields," said Alexey Bezryadin, a professor of physics at Illinois. "The theory takes into account both spin and orbital contributions."

To study this phenomenon, the researchers began by placing a single-wall carbon nanotube across a narrow trench (about 100 nanometers wide) etched in the surface of a silicon wafer. The nanotube was then coated with a thin film of superconducting material (molybdenum-germanium), chilled below its critical temperature, and its properties measured in the presence of a magnetic field.

"Usually, when you apply a magnetic field to a superconductor, the field suppresses or even destroys the superconductivity," Bezryadin said. "The magnetic field pulls apart the two electrons forming Cooper pairs and also rotates their spins. As the superconductor becomes smaller, however, the destructive effects of the magnetic field become weaker."

The magnetic field showed a remarkably weak effect on nanowires, the researchers report. Both the orbital and the spin pair-breaking effects were strongly suppressed in the nanowires. The orbital effect was weak because of the small dimensions of the wire (about 10 nanometers in diameter) and the spin effect was weakened by spin-orbit interactions.

"One should not set a goal of reducing the wire's diameter indefinitely, however," Bezryadin said. "As the diameter is decreased, disorder and boundary effects become more and more important. These factors also weaken superconductivity."

In fact, the researchers' results show that thin wires do not really have zero resistance, as bulk samples do. They also show that the thinner the wire the higher its electrical resistance is.

Because nanoscale superconductors don't repel magnetic fields, they could prove useful in a variety of superconducting applications. By incorporating nanowires as filaments in bigger superconducting wires, for example, more current could be carried without being destroyed by a magnetic field.

"Again, one needs to optimize the diameters of the wires in order to produce cables with the highest ability to carry strong currents and withstand strong magnetic fields," Bezryadin said. "The nanowire should not be too thick, in order to be less sensitive to magnetic fields; but it also should not be too thin, in order to be fully superconducting. A correct balance should be achieved."

###

The work was performed by Bezryadin, postdoctoral research associate Andrey Rogachev and graduate research assistant Anthony Bollinger. Funding came from the National Science Foundation, the Alfred P. Sloan Foundation and the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Tiny Superconductors Withstand Stronger Magnetic Fields." ScienceDaily. ScienceDaily, 21 February 2005. <www.sciencedaily.com/releases/2005/02/050211083346.htm>.
University Of Illinois At Urbana-Champaign. (2005, February 21). Tiny Superconductors Withstand Stronger Magnetic Fields. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2005/02/050211083346.htm
University Of Illinois At Urbana-Champaign. "Tiny Superconductors Withstand Stronger Magnetic Fields." ScienceDaily. www.sciencedaily.com/releases/2005/02/050211083346.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins