Featured Research

from universities, journals, and other organizations

SLAC's New Lensless X-ray Holography Technique Opens Door To Nanoscale World

Date:
February 17, 2005
Source:
Stanford University
Summary:
Researchers at the Stanford Synchrotron Radiation Laboratory (SSRL) and the German laboratory Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) have crafted a technique to take X-ray images that reveal tiny variations and lightning-quick changes in materials a thousand times smaller than the thickness of a strand of hair.

Lensless X-ray holography can reveal lightning-quick changes in nanometer-scale materials, such as minute magnetic variations in the cobalt-platinum film from which this holographic scattering pattern originates. Courtesy Jan Luening (SSRL) and Michael Hyde (SLAC)

Researchers at the Stanford Synchrotron Radiation Laboratory (SSRL) and the German laboratory Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) have crafted a technique to take X-ray images that reveal tiny variations and lightning-quick changes in materials a thousand times smaller than the thickness of a strand of hair.

Their work merited the cover of the Dec. 16 issue of Nature. The technique—lensless X-ray holography—will be valuable for researchers working with the world's first X-ray free electron laser, the Linac Coherent Light Source (LCLS), slated to begin experiments in 2009 at the Stanford Linear Accelerator Center (SLAC).

"We have demonstrated the first direct imaging technique that will work with LCLS, opening the door for taking pictures of ultra-fast changes in the collective behavior of ensembles of atoms and molecules," said SSRL physicist Jan Luening. He and BESSY colleague Stefan Eisebitt headed development of the technique.

"Our approach is simple and it can be applied to a wide variety of samples from thin films to small structures coming from material science, biology or chemistry," Luening said.

State-of-the-art light sources such as BESSY and SPEAR3 at SLAC achieve lensless imaging by filtering light so that the only remaining X-rays are "coherent"—that is, all the X-ray light waves are in phase with each other (each wave is peaking at the same time) and moving in the same direction like a marching band in step. Because it uses no lenses, the technique has the potential to take direct images with 10 times better spatial resolution than can be achieved with current X-ray lenses and bring even finer details into view. Another advantage to the technique is it entails much simpler alignment and sample handling than do established X-ray microscopy methods.

Lensless imaging will be especially powerful at LCLS and other future X-ray free electron lasers being planned in Germany and other countries. X-ray free electron lasers will be 10 billion times brighter than today's brightest synchrotron sources. And because laser light is inherently coherent, X-ray filtering is unnecessary. In addition, LCLS X-ray pulses will be extremely short—lasting only femtoseconds, mere quadrillionths of a second.

This impressive combination of properties not only makes LCLS a revolutionary machine, it makes lensless imaging ideally suited for obtaining "single shot" images of rapid, intricate changes in nanometer-sized materials. Just one pulse of X-ray light, rather than billions of pulses, will be needed to capture a clear picture of the action at that moment in time.

Scientists could take a series of such images to create a "movie" of the changes, analogous to time-lapse photography for slow processes like a flower coming into bloom. This confers a brand new capability to study the nonrepeatable aspects of biological, physical and chemical processes occurring on dizzyingly fast time scales. A few areas of investigation include proteins attaching to each other step by step and polymer chains assembling into ordered clusters.

Holography is the key

The technique works by shining a coherent beam of X-ray light through two adjacent holes: one containing the sample to be studied, the other a tiny "reference" hole. The scattered light from both holes overlays to form a single, holographic diffraction pattern. Holography not only maps the intensities of the light, as do normal diffraction patterns, it also encodes information about the phases of the light that is otherwise intrinsically lost.

"Without the phases, it's like trying to predict what happens next on a highway if you know where the cars are but not their speed," explained Luening. "You simply lack half of the important information. Holography elegantly encodes this other half in the measured intensities."

The information is decoded by applying a standard mathematical procedure known as Fourier transformation, yielding a complete image of the sample.

The demonstration experiment took place at BESSY in February 2004. The obtained image revealed the randomly organized "north" and "south" magnetic regions of a cobalt-platinum film to a spatial resolution of 50 nanometers (50 billionths of a meter).

The work of the SSRL authors is supported by the U. S. Department of Energy, Office of Basic Energy Sciences.


Story Source:

The above story is based on materials provided by Stanford University. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University. "SLAC's New Lensless X-ray Holography Technique Opens Door To Nanoscale World." ScienceDaily. ScienceDaily, 17 February 2005. <www.sciencedaily.com/releases/2005/02/050212132845.htm>.
Stanford University. (2005, February 17). SLAC's New Lensless X-ray Holography Technique Opens Door To Nanoscale World. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2005/02/050212132845.htm
Stanford University. "SLAC's New Lensless X-ray Holography Technique Opens Door To Nanoscale World." ScienceDaily. www.sciencedaily.com/releases/2005/02/050212132845.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins