Featured Research

from universities, journals, and other organizations

Imaging Technique To Help Improve Bone Regeneration

Date:
March 2, 2005
Source:
Georgia Institute Of Technology
Summary:
Tissue engineers can choose from a wide range of living cells, biomaterials and proteins to repair a bone defect. But finding the optimum combination requires improved methods for tracking the healing process.

This micro-CT image provides a detailed look at both the vascularization and mineralization of a bone sample.
Credit: Photo courtesy of Georgia Institute Of Technology

ATLANTA (February 22, 2005) — Tissue engineers can choose from a wide range of living cells, biomaterials and proteins to repair a bone defect. But finding the optimum combination requires improved methods for tracking the healing process.

Related Articles


New Georgia Tech research points to better ways to heal and regenerate bones using microcomputed tomography (micro-CT) imaging — a process 1 million times more detailed than a traditional CT scan. The new micro-CT scan technique simultaneously looks at both vascularization (the process by which blood vessels invade body tissues during repair) and mineralization (the process by which mineral crystals form to harden regenerating bone) by collecting three-dimensional images in vitro and in vivo.

Georgia Tech researchers used the new technique to help develop bone graft substitutes that combine the availability and structural integrity of bone allografts, or bone grafts taken from a human donor, with the better healing properties of bone autografts, or bone grafts taken from the patient.

Unlike a traditional x-ray that only shows the presence of bone in two dimensions, the new micro-CT technique provides high-resolution 3-D images of vascularization and mineralization during bone repair. This approach allows tissue engineers to optimize the design of implants.

The findings of the project, headed by Dr. Robert Guldberg, a research director at the Georgia Tech/Emory Center for the Engineering of Living Tissues and an associate professor in Georgia Tech’s School of Mechanical Engineering, were presented Feb. 20 at the annual meeting of the American Association for the Advancement of Science (AAAS).

“We’re applying 3-D imaging techniques to quantify vascularization and mineralization in order to evaluate which of these tissue engineering approaches is going to be able to best and most quickly restore bone function,” Guldberg said. “We’ve always known that vascularization is very important to bone repair, but we’ve never really had a good method to measure the process.”

Guldberg’s team has used micro-CT imaging to study fracture healing and repair of large bone defects that can result from the removal of bone tumors or crushing injuries. Large bone defects are typically repaired with allografts because large structural pieces are available from human donors.

But allografts are processed to avoid transmitting any diseases from the donor to the patient, leaving the bone sterile but dead. Allografts therefore lack living cells that could help the implants better integrate with existing bone. Consequently, they don’t heal as well as autografts and can re-break in up to 30 percent of patients within a year. Live autograft bone integrates much better, but large amounts of bone are needed to repair a site. They are often too large to remove elsewhere in the patient’s body and cause substantial additional pain.

Georgia Tech’s micro-CT imaging facility has been used to study tissue engineering approaches to enhance or replace the use of bone grafts clinically. Guldberg and his collaborators at the University of Rochester, for example, have explored various strategies to revitalize dead allograft bone. Wrapping allografts with biomaterials containing living marrow cells or delivering bioactive genes has resulted in significantly accelerated repair and integration of allograft implants.

While a traditional bone scan can give a doctor some idea of a bone’s density, a micro-CT scan that provides high resolution 3-D data on vascularization and mineralization can provide much more detailed information about the bone’s structure and blood flow. Although not yet available clinically, these techniques give researchers an unprecedented depth of data on how a bone implant is integrating into the body.

In addition to studying bone regeneration, the ability to look at detailed 3-D images of vascular networks can shed light on research into vascular injuries, disc degeneration in the back and help detect tumors early by pinpointing areas of increased vascularization (which often indicate tumor growth).


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "Imaging Technique To Help Improve Bone Regeneration." ScienceDaily. ScienceDaily, 2 March 2005. <www.sciencedaily.com/releases/2005/02/050223161830.htm>.
Georgia Institute Of Technology. (2005, March 2). Imaging Technique To Help Improve Bone Regeneration. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2005/02/050223161830.htm
Georgia Institute Of Technology. "Imaging Technique To Help Improve Bone Regeneration." ScienceDaily. www.sciencedaily.com/releases/2005/02/050223161830.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins