Featured Research

from universities, journals, and other organizations

Researchers Discover A Good Side To Cholesterol In Controlling Cell Signals

Date:
March 16, 2005
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Cholesterol, often stigmatized for its role in heart disease, has long been known to be essential for the health of the fat-laden membranes that surround individual cells. New findings by researchers at UT Southwestern Medical Center highlight a novel role for cholesterol inside the cell itself - anchoring a signaling pathway linked to cell division and cancer.

Dr. Richard G.W. Anderson, chairman of cell biology at UT Southwestern (center), Dr. Ping-Yuan Wang, postdoctoral fellow (left), and Dr. Jian Weng, assistant professor of cell biology, have discovered that cholesterol anchors a signaling pathway linked to cell division and cancer.
Credit: Photo courtesy of UT Southwestern Medical Center At Dallas

DALLAS - March 3, 2005 - Cholesterol, often stigmatized for its role in heart disease, has long been known to be essential for the health of the fat-laden membranes that surround individual cells. New findings by researchers at UT Southwestern Medical Center highlight a novel role for cholesterol inside the cell itself - anchoring a signaling pathway linked to cell division and cancer. These findings appear in the March 4 issue of Science and are available online.

"Cell signals have to be tightly controlled," said Dr. Richard G.W. Anderson, chairman of cell biology and senior author of the study. "If the signaling machines do not work, which can happen when the cell doesn't have enough cholesterol, the cell gets the wrong information, and disease results."

The cell membrane, which is fluid in nature, contains cholesterol. Dr. Anderson's research focuses on regions of the membrane where cholesterol is enriched. These regions, called lipid domains, are more rigid than the rest of the cell membrane because of cholesterol and play a critical role in organizing signaling machinery at the cell surface. The correct arrangement of signaling modules in these domains is vital for communication inside the cell and is dependent on proper levels of cholesterol.

While studying how cholesterol movesto the membrane to get to lipid domains, Dr. Anderson, who holds the Cecil H. Green Distinguished Chair in Cellularand Molecular Biology, and colleagues found that cholesterol can work outside the membrane to regulate a key signaling pathway that occurs inside the cell. Through an interaction with a protein called the oxysterol binding protein (OSBP), cholesterol holds together a group of enzymes that deactivates extracellular signal-related kinase (ERK). Overactive ERK is associated with multiple cancers.

When the amount of cholesterol in lipid domains is normal, the OSBP-cholesterol complex keeps the amount of active ERK under control. When cholesterol in the domains gets too low, however, the complex falls apart, leading to abnormally high levels of active ERK.

Dr. Anderson and colleagues noticed that OSBP has binding sites for both cholesterol and the other proteins in the complex. They believe that when cholesterol binds OSBP it changes shape to bind the key enzymes in a way that allows them to work together to control deactivation of ERK. When lipid domain cholesterol gets low, OSBP loses its cholesterol and no longer is able to bind the enzymes that deactivate ERK, keeping it active.

"OSBP appears to work like a cholesterol-regulated scaffolding protein that controls a key signaling pathway," Dr. Anderson said "This work shows a new way that lipids can regulate key signaling pathways and raises the possibility that other lipid regulated signaling scaffolds can malfunction in other diseases."

Other UT Southwestern contributors to the study were Dr. Jian Weng, assistant professor of cell biology, and Dr. Ping-Yuan Wang, postdoctoral researcher in cell biology and lead author.

This work was supported by the National Institutes of Health and the Perot Foundation.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Researchers Discover A Good Side To Cholesterol In Controlling Cell Signals." ScienceDaily. ScienceDaily, 16 March 2005. <www.sciencedaily.com/releases/2005/03/050309144856.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2005, March 16). Researchers Discover A Good Side To Cholesterol In Controlling Cell Signals. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2005/03/050309144856.htm
University Of Texas Southwestern Medical Center At Dallas. "Researchers Discover A Good Side To Cholesterol In Controlling Cell Signals." ScienceDaily. www.sciencedaily.com/releases/2005/03/050309144856.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins