Featured Research

from universities, journals, and other organizations

Researchers Discover A Good Side To Cholesterol In Controlling Cell Signals

Date:
March 16, 2005
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Cholesterol, often stigmatized for its role in heart disease, has long been known to be essential for the health of the fat-laden membranes that surround individual cells. New findings by researchers at UT Southwestern Medical Center highlight a novel role for cholesterol inside the cell itself - anchoring a signaling pathway linked to cell division and cancer.

Dr. Richard G.W. Anderson, chairman of cell biology at UT Southwestern (center), Dr. Ping-Yuan Wang, postdoctoral fellow (left), and Dr. Jian Weng, assistant professor of cell biology, have discovered that cholesterol anchors a signaling pathway linked to cell division and cancer.
Credit: Photo courtesy of UT Southwestern Medical Center At Dallas

DALLAS - March 3, 2005 - Cholesterol, often stigmatized for its role in heart disease, has long been known to be essential for the health of the fat-laden membranes that surround individual cells. New findings by researchers at UT Southwestern Medical Center highlight a novel role for cholesterol inside the cell itself - anchoring a signaling pathway linked to cell division and cancer. These findings appear in the March 4 issue of Science and are available online.

"Cell signals have to be tightly controlled," said Dr. Richard G.W. Anderson, chairman of cell biology and senior author of the study. "If the signaling machines do not work, which can happen when the cell doesn't have enough cholesterol, the cell gets the wrong information, and disease results."

The cell membrane, which is fluid in nature, contains cholesterol. Dr. Anderson's research focuses on regions of the membrane where cholesterol is enriched. These regions, called lipid domains, are more rigid than the rest of the cell membrane because of cholesterol and play a critical role in organizing signaling machinery at the cell surface. The correct arrangement of signaling modules in these domains is vital for communication inside the cell and is dependent on proper levels of cholesterol.

While studying how cholesterol moves to the membrane to get to lipid domains, Dr. Anderson, who holds the Cecil H. Green Distinguished Chair in Cellular and Molecular Biology, and colleagues found that cholesterol can work outside the membrane to regulate a key signaling pathway that occurs inside the cell. Through an interaction with a protein called the oxysterol binding protein (OSBP), cholesterol holds together a group of enzymes that deactivates extracellular signal-related kinase (ERK). Overactive ERK is associated with multiple cancers.

When the amount of cholesterol in lipid domains is normal, the OSBP-cholesterol complex keeps the amount of active ERK under control. When cholesterol in the domains gets too low, however, the complex falls apart, leading to abnormally high levels of active ERK.

Dr. Anderson and colleagues noticed that OSBP has binding sites for both cholesterol and the other proteins in the complex. They believe that when cholesterol binds OSBP it changes shape to bind the key enzymes in a way that allows them to work together to control deactivation of ERK. When lipid domain cholesterol gets low, OSBP loses its cholesterol and no longer is able to bind the enzymes that deactivate ERK, keeping it active.

"OSBP appears to work like a cholesterol-regulated scaffolding protein that controls a key signaling pathway," Dr. Anderson said "This work shows a new way that lipids can regulate key signaling pathways and raises the possibility that other lipid regulated signaling scaffolds can malfunction in other diseases."

Other UT Southwestern contributors to the study were Dr. Jian Weng, assistant professor of cell biology, and Dr. Ping-Yuan Wang, postdoctoral researcher in cell biology and lead author.

This work was supported by the National Institutes of Health and the Perot Foundation.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Researchers Discover A Good Side To Cholesterol In Controlling Cell Signals." ScienceDaily. ScienceDaily, 16 March 2005. <www.sciencedaily.com/releases/2005/03/050309144856.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2005, March 16). Researchers Discover A Good Side To Cholesterol In Controlling Cell Signals. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2005/03/050309144856.htm
University Of Texas Southwestern Medical Center At Dallas. "Researchers Discover A Good Side To Cholesterol In Controlling Cell Signals." ScienceDaily. www.sciencedaily.com/releases/2005/03/050309144856.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins