Featured Research

from universities, journals, and other organizations

Big Hopes For Tiny, New Hydrogen Storage Material

Date:
March 22, 2005
Source:
Pacific Northwest National Laboratory
Summary:
Researchers at the Department of Energy's Pacific Northwest National Laboratory are taking a new approach to "filling up" a fuel cell car with a nanoscale solid, hydrogen storage material. Their discovery could hasten a day when our vehicles will run on hydrogen-powered, environmentally friendly fuel cells instead of gasoline engines.

LOS ANGELES – Researchers at the Department of Energy's Pacific Northwest National Laboratory are taking a new approach to "filling up" a fuel cell car with a nanoscale solid, hydrogen storage material. Their discovery could hasten a day when our vehicles will run on hydrogen-powered, environmentally friendly fuel cells instead of gasoline engines.

The challenge, of course, is how to store and carry hydrogen. Whatever the method, it needs to be no heavier and take up no more space than a traditional gas tank but provide enough hydrogen to power the vehicle for 300 miles before refueling.

One approach is to find a solid chemical material that can hold and then release hydrogen as needed. Recently, PNNL researchers Tom Autrey and Anna Gutowska found a way to release hydrogen from a solid compound almost 100 times faster than was previously possible.

They will present their findings at the American Physical Society Meeting in Los Angeles on March 21, as part of The Grand Challenge of Hydrogen Storage symposium.

"The compound ammonia borane is known to release hydrogen at temperatures below 80 degrees Celsius, but the rate of release is extremely slow," said Autrey. "In the nanophase, the hydrogen comes off very fast – approximately 100 times faster compared to conventional bulk ammonia borane."

The PNNL team used a nanoscale mesoporous silica material as scaffolding for ammonia borane to achieve a high rate of hydrogen release at a lower temperature than is found at the conventional scale. A lower temperature reaction, 80 degrees Celsius (170 degrees Fahrenheit), or below, is important because additional energy is not required to maintain the reaction.

To transform the ammonia borane to a nanomaterial, scientists dissolve the solid compound in a solvent and then add the solution to the mesoporous support material.

Capillary action of the porous material pulls the ammonia borane into the pores of the support. When the solvent is removed, nanosized pores filled with ammonia borane are left. Each pore is about 6.5 nanometers in diameter.

The nanoscience approach to using ammonia borane as a storage material exceeds DOE's weight and volume storage goals for 2010. As a bonus, it also avoids the volatile chemicals produced at the bulk scale.

"We found no detectable borazine, which is harmful to fuel cells, produced by the reaction in the mesoporous materials," said Autrey.

Based on computational thermodynamic analysis, researchers believe the process may eventually be designed to be reversible, which would allow the storage material to be regenerated and provide a sustainable hydrogen storage compound with a longer lifetime. A patent is pending on this process for hydrogen storage.


Story Source:

The above story is based on materials provided by Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Pacific Northwest National Laboratory. "Big Hopes For Tiny, New Hydrogen Storage Material." ScienceDaily. ScienceDaily, 22 March 2005. <www.sciencedaily.com/releases/2005/03/050322135828.htm>.
Pacific Northwest National Laboratory. (2005, March 22). Big Hopes For Tiny, New Hydrogen Storage Material. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2005/03/050322135828.htm
Pacific Northwest National Laboratory. "Big Hopes For Tiny, New Hydrogen Storage Material." ScienceDaily. www.sciencedaily.com/releases/2005/03/050322135828.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins