Featured Research

from universities, journals, and other organizations

Point-contact Spectroscopy Deepens Mystery Of Heavy-fermion Superconductors

Date:
April 14, 2005
Source:
University Of Illinois At Urbana-Champaign
Summary:
Theoretical understanding of heavy-fermion superconductors has just slipped a notch or two, says a team of experimentalists. Researchers from the University of Illinois at Urbana-Champaign and Los Alamos National Laboratory recently used a sensitive technique called point-contact spectroscopy to explore Andreev reflection between a normal metal and a heavy-fermion superconductor.

Laura Greene, a Swanlund Endowed Chair in physics at Illinois, and colleagues at Los Alamos National Laboratory recently used a sensitive technique called point-contact spectroscopy to explore Andreev reflection between a normal metal and a heavy-fermion superconductor.
Credit: Photo by Kwame Ross

CHAMPAIGN, Ill. — Theoretical understanding of heavy-fermion superconductors has just slipped a notch or two, says a team of experimentalists.

Related Articles


Researchers from the University of Illinois at Urbana-Champaign and Los Alamos National Laboratory recently used a sensitive technique called point-contact spectroscopy to explore Andreev reflection between a normal metal and a heavy-fermion superconductor. Conventional theories cannot account for their data, the scientists report.

“According to conventional theories, the Fermi velocity mismatch between a normal metal and a heavy-fermion superconductor is too large for Andreev reflection to occur,” said Laura Greene, a Swanlund Endowed Chair in physics at Illinois. “But we can clearly and reproducibly measure it as a matter of course.”

Andreev reflection is a particle-hole conversion process that occurs at the interface of a normal metal and a superconductor. Using point-contact spectroscopy, Greene and postdoctoral research associate Wan Kyu Park obtained measurements of Andreev reflection at the interface of a normal metal (gold) and the heavy-fermion superconductor CeCoIn5 (cerium-cobalt-indium-five).

Andreev reflection can be better understood by drawing an analogy to light, Greene said. When light is incident on glass, some of the light is reflected due to the difference in index of refraction between air and glass, and some is transmitted into the glass. The index of refraction is essentially the velocity difference: light travels slower in glass than in air.

Shining light on a diamond, which has an index of refraction larger than glass, causes more light to be reflected (one of the reasons diamonds appear to glow). The larger the velocity mismatch, the more light will be reflected.

Similarly, when a metal and a superconductor are in good electrical contact and have different Fermi velocities (the speed of electrons at the Fermi energy), some of the electrons will be reflected in a normal fashion. The larger the mismatch, the more electrons will be reflected and the less transmitted.

The Andreev reflection process requires at least some penetration of the electrons into the superconductor, Greene said. If the Fermi velocities are quite disparate, then there is a large fraction of normal reflection and less of a chance for Andreev reflection.

Conventional theory dictated that all of the reflection between a normal metal and a heavy-fermion superconductor would be normal and there would be no Andreev reflection.

“Our measurements prove that existing theories can’t account for Andreev reflection between normal metals and heavy-fermion superconductors,” said Greene, who will present the team’s findings at the spring meeting of the American Physical Society, to be held in Los Angeles, March 21-25.

“The bottom line is, we can understand Andreev reflection occurring between a normal metal and a superconductor, but we can’t understand it occurring between a normal metal and a heavy-fermion superconductor,” Greene said. “We need a whole new theoretical formulation to explain this phenomenon.”

In addition to Greene and Park, the research team included physicists John Sarrao and Joe Thompson at Los Alamos. Tony Leggett (Macarthur Professor of Physics at Illinois), his graduate student, Vladimir Lukic, and an undergraduate student in Greene’s group, Justin Elenewski, are collaborating on this experimental effort in investigating new theoretical frameworks to account for these results. The U.S. Department of Energy funded the work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Point-contact Spectroscopy Deepens Mystery Of Heavy-fermion Superconductors." ScienceDaily. ScienceDaily, 14 April 2005. <www.sciencedaily.com/releases/2005/03/050325160419.htm>.
University Of Illinois At Urbana-Champaign. (2005, April 14). Point-contact Spectroscopy Deepens Mystery Of Heavy-fermion Superconductors. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2005/03/050325160419.htm
University Of Illinois At Urbana-Champaign. "Point-contact Spectroscopy Deepens Mystery Of Heavy-fermion Superconductors." ScienceDaily. www.sciencedaily.com/releases/2005/03/050325160419.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
France's Sauternes Wine Threatened by New Train Line

France's Sauternes Wine Threatened by New Train Line

AFP (Dec. 16, 2014) Winemakers in southwestern France's Bordeaux are concerned about a proposed high speed train line that could affect the microclimate required for the region's sweet wine. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins