Featured Research

from universities, journals, and other organizations

Understanding Turbulence In The Fast Lane — Mach 10 And Beyond

Date:
April 5, 2005
Source:
University Of Arizona
Summary:
Although NASA's X-43A and other hypersonic airplanes use air-breathing engines and fly much like 747s, there's a big difference between ripping air at Mach 10 (around 7,000 mph) and cruising through it at 350 mph. These differences are even more pronounced when hypersonic aircraft sip rarified air at 100,000 feet, while commercial airliners gulp the much thicker stuff at 30,000.

UA Associate Professor Anatoli Tumin is working on research that will help engineers design hypersonic aircraft like NASA's X-43A. (NASA photo)

Although NASA's X-43A and other hypersonic airplanes use air-breathing engines and fly much like 747s, there's a big difference between ripping air at Mach 10 (around 7,000 mph) and cruising through it at 350 mph.

These differences are even more pronounced when hypersonic aircraft sip rarified air at 100,000 feet, while commercial airliners gulp the much thicker stuff at 30,000.

Aero-thermodynamic heating is a very big deal at Mach 10. The critical point comes where air changes from flowing smoothly across a surface — laminar flow — to when it becomes chaotic — turbulent flow.

Aero-thermodynamic heating largely determines the engine size, weight, choice of materials and overall size in hypersonic airplanes. So engineers would like to have a much better understanding of what triggers turbulence and how they can control it at hypersonic speeds.

Air goes from laminar to turbulent at what engineers call the "boundary layer." They understand how this happens at slower speeds, but they're still grappling with which factors influence it at hypersonic speeds.

Associate Professor Anatoli Tumin, of UA Aerospace and Mechanical Engineering (AME), is among those studying the problem and has developed a model that predicts the surface roughness effects on the transition from laminar to turbulent flow at hypersonic speeds.

His theory has a lot to do with partial differential equations, Navier-Stokes equations and other brain-taxing mathematics that Tumin and Applied Math Ph.D. student Eric Forgoston have grappled with during the past couple of years.

"In principle, the theory tells us what the optimal perturbations are that will lead to turbulent flow," Tumin said. "Now we can explore different geometries for roughness elements to see which are best. We can explore how to space them and where we should position them."

The researchers will soon run a supercomputer simulation to compare their theory with what actually happens when air flows across a roughened surface at hypersonic speeds.

Currently, these simulations guzzle tens of hours of supercomputing time. But if Tumin's theory is correct, engineers will soon get the same results from their office laptops.

Tumin is working with Research Assistant Professor Simone Zuccher, of UA AME, to develop a software package that will allow designers to do this laptop-style analysis. The software will help them predict when and where the transitions from laminar to turbulent flow occur in engines and on surfaces operating at hypersonic speeds.

"We developed our theory and arrived at what is called the 'transient growth mechanism,'" Tumin said. "The airflow is stable, but there are some tiny disturbances within it that can grow downstream. We can generate these downstream, streamwise vortices (spiraling flows) by using the correct amount of roughness in the right places. We can do this at an engine inlet, for instance, in order to trip the boundary layer and to have stable engine performance."

"If we can understand the laminar-turbulent transition mechanism, we can predict the transition point accurately," Tumin said. "This is important for heat protection, where you want laminar flow. Otherwise, you need to add a lot of weight for thermal insulation because you have to assume turbulent flow at the surface when you do your design calculations. Similarly, engine designers would like to have a quick transition to turbulence to have a turbulent flow at an engine inlet."

Ultimately, better understanding the transition to turbulence at hypersonic speeds will allow designers to build lighter, faster, more efficient airplanes capable of traveling at even higher speeds of Mach 15 or more.


Story Source:

The above story is based on materials provided by University Of Arizona. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arizona. "Understanding Turbulence In The Fast Lane — Mach 10 And Beyond." ScienceDaily. ScienceDaily, 5 April 2005. <www.sciencedaily.com/releases/2005/03/050326101613.htm>.
University Of Arizona. (2005, April 5). Understanding Turbulence In The Fast Lane — Mach 10 And Beyond. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2005/03/050326101613.htm
University Of Arizona. "Understanding Turbulence In The Fast Lane — Mach 10 And Beyond." ScienceDaily. www.sciencedaily.com/releases/2005/03/050326101613.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins