Featured Research

from universities, journals, and other organizations

Newly Discovered Pathway Might Help In Design Of Cancer Drugs

Date:
April 3, 2005
Source:
Johns Hopkins University
Summary:
Johns Hopkins chemists have discovered a new way to sabotage DNA's ability to reproduce, a finding that could eventually lead to the development of new anti-cancer drugs and therapies.

Johns Hopkins chemists have discovered a new way to sabotage DNA's ability to reproduce, a finding that could eventually lead to the development of new anti-cancer drugs and therapies.

The method could enable future doctors to target treatment more precisely, rather than directing chemotherapeutic medication or radiation to tumors through a scattershot approach, said Marc Greenberg, a chemistry professor in the university's Zanvyl Krieger School of Arts and Sciences, who will present his team's findings on March 14 at the 229th American Chemical Society Meeting in San Diego.

"What we did was to identify a way to create a very damaged form of DNA that is often more deadly to the cell than other types of damage," said Greenberg. "That's how many anti-tumor medications -- medications such as mitomycin c -- work: They kill off tumors by linking up with the cancer cells' DNA and sticking its genetic code together so it dies. Our discovery takes that a step further, establishing that there is a way to efficiently create this type of damage by modifying the DNA itself."

In the lab, Greenberg and his team used organic chemistry to create a synthetic, double-stranded DNA with special chemical characteristics and exposed it to long wavelength light that selectively switches on the DNA damage process.

He said that the synthetic DNA is very similar to that which is produced when cells are exposed to radiation, with one exception: Greenberg's team's DNA was damaged at only one place on its chain, allowing the researchers to study it and learn about that particular chemical pathway in detail.

"Exposing DNA to radiation is like hitting a fine piece of crystal stemware with a hammer. It shatters, and looking for a particular chemical pathway is like looking for a needle in a haystack," the chemist explained. "What we did was more like carrying out a precision attack. It let us get a closer look."

###

The team's work was funded by the National Institute of General Medical Sciences at the National Institutes of Health.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Newly Discovered Pathway Might Help In Design Of Cancer Drugs." ScienceDaily. ScienceDaily, 3 April 2005. <www.sciencedaily.com/releases/2005/03/050326101835.htm>.
Johns Hopkins University. (2005, April 3). Newly Discovered Pathway Might Help In Design Of Cancer Drugs. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/03/050326101835.htm
Johns Hopkins University. "Newly Discovered Pathway Might Help In Design Of Cancer Drugs." ScienceDaily. www.sciencedaily.com/releases/2005/03/050326101835.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins