Featured Research

from universities, journals, and other organizations

Observing Einstein's Gravitational Waves

Date:
April 19, 2005
Source:
European Space Agency
Summary:
A hundred years ago, Albert Einstein published his theory of relativity. The joint ESA-NASA "LISA" mission hopes to detect gravitational waves in space. The Laser Interferometer Space Antenna (LISA) mission, whose launch is envisaged for 2013, will use laser interferometers - very sensitive tools to measure tiny variations in the distance between objects – and proof masses on board three spacecraft flying in formation.

Proof mass on satellite diagram.
Credit: Courtesy of Max Planck Institute Hanover

A hundred years ago, Albert Einstein published his theory of relativity. The joint ESA-NASA "LISA" mission hopes to detect gravitational waves in space.

The existence of gravitational waves stems from Einstein's postulates. When very massive bodies are disturbed, they radiate waves or ripples that travel through space. When these waves hit an object, this will make minute movements as a consequence of the deformation of the space-time texture in which it is at rest.

The Laser Interferometer Space Antenna (LISA) mission, whose launch is envisaged for 2013, will use laser interferometers - very sensitive tools to measure tiny variations in the distance between objects – and proof masses on board three spacecraft flying in formation.

The system is designed to detect low-frequency gravitational waves which originate from, for instance, black holes swallowing massive neutron stars or binary star systems revolving around each other. They were also produced at the very origins of time, when the Big Bang occurred.

"As far as we know, the Universe began 13.7 billion years ago," explains Karsten Danzmann, Principal Investigator for the LISA mission at the Max-Planck-Institut fur Gravitationsphysik in Hanover in Germany.

"We have the dream of listening to that Big Bang itself by detecting and studying gravitational waves. It will give us a chance of listening to the dark, invisible side of the Universe."

Gravitational waves are so weak they are extremely difficult to hear. Because of our planet's own gravity, laser interferometers on Earth can only detect high frequencies, stemming from sources which are relatively close.

"If you want to listen to the high pitch notes of a concert you can do so with small ears, but if you want to listen to the real low pitches, you need big ears, and the only place where you can have big ears is in space," says Danzmann.

The LISA mission is one of the most ambitious ever undertaken: positioning and flying three spacecraft in a triangular formation, 5 million kilometres apart. The constellation will orbit the Sun, following the Earth at a distance of 50 million kilometres so as not to be perturbed by its gravity.

Infrared lasers will be beamed between the spacecraft, arriving on small 2-kilogram proof masses, 4-centimetre cubes made of gold and platinum.

At the University of Trent in Italy, Euronews was able to see the first of these proof masses destined for the LISA Pathfinder precursor mission. Due to be launched in 2008, its single satellite will test the general concepts and technologies of the LISA mission.

"We will be flying totally new technologies in space," says Professor Stefano Vitale, the Principal Investigator for the LISA Pathfinder mission. "The structure of the satellites will protect the proof masses. They will float much like astronauts hover in the void of space. But their precise position will be constantly monitored to detect when they are influenced by a passing gravity wave."

Precise is a euphemism when one details the accuracy of such measurements: LISA will need to detect infinitely minute movements of the proof masses, of the order of a tenth of an atom, that is a billionth of a millimetre! It will also identify the polarisation of waves, and thus the direction they come from.

The detection of these gravitational waves will complete the missing links in Einstein's theory of relativity and throw wide-open a new avenue of exploration in fundamental physics and astronomy.

"Einstein had foreseen the eventual detection of gravitational waves," concludes Stefano Vitale. "But a hundred years ago, no suitable instruments were available and Einstein's work was entirely theoretical. Now we have the technologies, we are picking up the challenge, and he would no doubt be greatly pleased to see that we are pursuing his work."


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Observing Einstein's Gravitational Waves." ScienceDaily. ScienceDaily, 19 April 2005. <www.sciencedaily.com/releases/2005/04/050419111515.htm>.
European Space Agency. (2005, April 19). Observing Einstein's Gravitational Waves. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2005/04/050419111515.htm
European Space Agency. "Observing Einstein's Gravitational Waves." ScienceDaily. www.sciencedaily.com/releases/2005/04/050419111515.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins