Featured Research

from universities, journals, and other organizations

An Exceptionally Effective Lead-Detection Protein

Date:
April 25, 2005
Source:
Brookhaven National Laboratory
Summary:
Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and the University of Chicago have discovered that a member of a well-known protein family is better at detecting lead than any other known substance. Learning more about the protein’s structure and lead-detection mechanism, they say, may lead to new ways to synthesize drugs or to develop treatments for lead poisoning.

Niels van der Lelie (L) and Chuan He.
Credit: Photo courtesy of Rookhaven National Laboratory

Upton, NY — Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and the University of Chicago have discovered that a member of a well-known protein family is better at detecting lead than any other known substance. Learning more about the protein’s structure and lead-detection mechanism, they say, may lead to new ways to synthesize drugs or to develop treatments for lead poisoning, a worldwide problem that, in the U.S. alone, inflicts irreversible physical damage to half a million children each year.

“This protein can detect very few lead ions in a sea of other metals,” said biologist Daniel (Niels) van der Lelie, one of the Brookhaven scientists who participated in the study. “That’s an unprecedented, remarkable ability, and we are excited to learn how the protein does it.”

In fact, the results, published in the March 31, 2005, online version of Angewandte Chemie International Edition, show that the protein is more than one thousand times more likely to bind to lead than other metals, such as mercury, zinc, or copper.

To determine this, the researchers used a method developed by one of the paper’s co-authors, University of Chicago chemist Chuan He. They bind the protein to a short segment of double-stranded DNA that will fluoresce (emit light) if the DNA strands are separated. With no lead nearby, the two strands of the DNA double helix stay “zipped,” and there is no fluorescence. But when a common lead ion, known as lead(II), binds to the protein, the DNA strands “unzip,” releasing a burst of ultraviolet light.

The scientists tested the protein’s response to the presence of several metals. Most elicited little to no reaction from the protein, producing fluorescence barely above the constant background level. The lead(II) ion, however, induced a large jump in the fluorescence intensity — three times brighter than background.

“This fluorescence method converted the protein into an excellent lead(II)-ion probe,” said He. “It has the potential to be used for rapid, on-the-spot lead detection in many situations, such as in homes.”

Van der Lelie, He, and their collaborators plan to further study the structure of the protein, which may reveal why the molecule is so selectively “interested” in lead ions. This information could be used to design lead-poisoning treatment agents that would bind only to lead ions in the body. Current treatments are not so selective, also stripping away beneficial metals, such as iron and zinc, which results in serious side effects.

The scientists will also attempt to optimize the DNA-probe method so that the probe emits visible light. This would simplify detection and increase the probe’s practicality. The group will also apply similar strategies to developing sensor systems for other metal ions.

This work was supported by the University of Chicago, the Searle Scholars Program, the Burroughs Wellcome Fund Cross-Disciplinary Training Program, and funds from Brookhaven’s Laboratory Directed Research and Development program.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "An Exceptionally Effective Lead-Detection Protein." ScienceDaily. ScienceDaily, 25 April 2005. <www.sciencedaily.com/releases/2005/04/050421235524.htm>.
Brookhaven National Laboratory. (2005, April 25). An Exceptionally Effective Lead-Detection Protein. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2005/04/050421235524.htm
Brookhaven National Laboratory. "An Exceptionally Effective Lead-Detection Protein." ScienceDaily. www.sciencedaily.com/releases/2005/04/050421235524.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins