Featured Research

from universities, journals, and other organizations

Switching To Chemistry

Date:
April 22, 2005
Source:
Weizmann Institute
Summary:
Researchers at the Weizmann Institute of Science have demonstrated a new kind of electrical switch, formed of organic molecules, that could be used in the future in nanoscale electronic components.

Researchers at the Weizmann Institute of Science have demonstrated a new kind of electrical switch, formed of organic molecules, that could be used in the future in nanoscale electronic components.

Their approach involved rethinking a phenomenon that drives many of today's high-speed semiconductors. Negative differential resistance (NDR), as the phenomenon is called, works contrary to the normal laws of electricity, in which an increase in voltage translates into a direct increase in current. In NDR, as the voltage steadily increases, the current peaks and then drops off, essentially allowing one to create a switch with no moving parts. But until now, those attempting to recreate NDR at the molecular scale had only managed it at extremely low temperatures.

Prof. David Cahen of the Institute's Materials and Interfaces Department and graduate student Adi Salomon thought research carried out by Salomon and others in Cahen's lab during her M.Sc. studies on connections between metal wires and organic (carbon based) molecules might hold part of the key to usable nanoscale NDR. They had found that, like people, molecules and metal wires need chemistry between them for barriers to be lowered and the juice to really flow. For a given voltage, if the molecules are held to the wire by chemical bonds (in which the two are linked by shared electrons), the current flowing through them will be many times higher than if they are only touching a mere physical bond.

Using this insight, the team designed organic molecules that pass electricity through chemical bonds at a lower voltage, but through physical bonds at a higher voltage. As the voltage approaches the higher level, sulfur atoms at one end of the molecule loosen their chemical bonds with the wire, and the current drops off as the switchover occurs.

But the molecules, once the chemical bond to the wire was broken, tended to move apart, preventing them from switching back to the chemically-bonded state. Prof. Abraham Shanzer of the Organic Chemistry Department, who had worked with the team on the original molecular design, now helped them to create long add-on tails to hold the molecules in place with a weak attraction. Now, the NDR in their molecules was stable, reversible and reproducible at room temperature.

Possible applications include nanoscale electronic memory and heat-sensing switches. The future of miniaturized electronics may lie in methods that combine chemistry with nanoscience, say the scientists. "We don't take human-sized objects and try to scale them down, but create new things from the universe of possibilities open to chemists that are specifically designed to function in the nanoworld."

Prof. David Cahen's research is supported by the Minerva Stiftung Gesellschaft fuer die Forschun M. B. H.; the Wolfson Advanced Research Center; the Philip M. Klutznick Fund for Research; Delores and Eugene M. Zemsky; and the Weizmann-Johns Hopkins Research Program. Prof. Cahen is the incumbent of the Rowland Schaefer Professorial Chair in Energy Research.

###


Story Source:

The above story is based on materials provided by Weizmann Institute. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute. "Switching To Chemistry." ScienceDaily. ScienceDaily, 22 April 2005. <www.sciencedaily.com/releases/2005/04/050422000658.htm>.
Weizmann Institute. (2005, April 22). Switching To Chemistry. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2005/04/050422000658.htm
Weizmann Institute. "Switching To Chemistry." ScienceDaily. www.sciencedaily.com/releases/2005/04/050422000658.htm (accessed September 14, 2014).

Share This



More Matter & Energy News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins