Featured Research

from universities, journals, and other organizations

Disease Progression Model Of Pancreatic Cancer Developed By Penn Researchers

Date:
May 19, 2005
Source:
University of Pennsylvania School of Medicine
Summary:
Building on previous work, researchers at the University of Pennsylvania School of Medicine have developed an animal model of pancreatic cancer that closely mimics disease progression in humans. From this, they hope to develop new treatments for this deadly disease. Advanced pancreatic cancer is among the most lethal of cancers, with a one-year survival rate after chemotherapy of only 17 to 28 percent of patients.

Philadelphia, PA -- Building on previous work, researchers at the University of Pennsylvania School of Medicine have developed an animal model of pancreatic cancer that closely mimics disease progression in humans. From this, they hope to develop new treatments for this deadly disease. Advanced pancreatic cancer is among the most lethal of cancers, with a one-year survival rate after chemotherapy of only 17 to 28 percent of patients, according to the National Cancer Institute.

Sunil R. Hingorani, MD, PhD, and David A. Tuveson, MD, PhD, both in the Departments of Medicine and Cancer Biology, and colleagues, engineered mice to express two mutant genes commonly associated with pancreatic cancer: Kras, an oncogene, and p53, a well-studied tumor suppressor. The investigators linked physiological, cellular, and genomic changes due to mutations in Kras and p53 in the mice to changes similar to that observed in pancreatic cancer patients. They report their findings in the May issue of Cancer Cell.

The disease that develops in the Kras and p53 mutant mouse model demonstrates distinct similarities to human pancreatic cancer at multiple levels. "In terms of clinical presentation, metastatic burden, and histological changes in tissue, this model appears to closely mimic the human disease," says Hingorani.

Clinical symptoms in the mutant mice mirrored those displayed in pancreatic cancer patients, such as abdominal swelling and muscle loss. Similarly, the progression of pancreatic cancer metastases paralleled that seen in the human disease. "In this model, pancreatic cancer metastasizes to the liver, lungs, diaphragm, and adrenal glands, all the same places that human pancreatic cancer metastasizes," says Tuveson.

The frequency of metastases to these various organ sites was also highly similar to that seen in humans. In human patients, 60 to 80 percent develop metastases to the liver; and 50 to 60 percent develop metastases to the lungs. In the genetically modified animals, 63 percent displayed liver metastases, and 45 percent displayed lung metastases -- further emphasizing the accuracy of this model in mimicking human pancreatic cancer.

To understand the progression of pancreatic cancer, Hingorani and colleagues studied cell lines derived from primary tumor and metastasized cells. From this, the researchers established the occurrence of genomic instability in the mouse model. Genomic instability -- continuous formation of mutated chromosomes -- leads to widespread genetic changes throughout the affected cells. Genomic instability is seen in many human epithelial cancers, including pancreatic cancer, and is thought to be a driving force in the transition from local tumor growth to metastases of cancers. According to Hingorani, "This model may prove useful to understanding human pancreatic and other epithelial cancers because the key event of genomic instability that has been very difficult to model in the mouse appears to be recapitulated here."

In the pancreatic tumors and metastases from the mouse model, the investigators characterized other molecules implicated in pancreatic cancer. Often, the expression of molecules such as growth factors and their receptors will offer possible targets for treatment. The researchers were surprised to discover a high degree of heterogeneity in expression among these key molecules across the specimens. After ruling out the likelihood that this variability resulted from additional acquired mutations in known key tumor suppressor pathways, Hingorani suggests, "there may actually be unique genetic routes to pancreatic cancer, such that not all pancreatic cancers are equivalent."

The development of the first animal model for pancreatic cancer that fully imitates the progression of the human condition will likely open many new doors in understanding this debilitating disease. "With a model that can generate the full spectrum of disease, from preinvasive to invasive and metastastic lesions, we can begin to tease out the events that are linked to the progression of pancreatic cancer," explains Hingorani. "In trying to understand what events are required to create and support invasive and metastatic disease, we hope to translate our findings into better therapies," states Hingorani.

The study was funded in part by the National Institutes of Health, the National Cancer Institute, the National Pancreas Foundation, and an AACR-PanCAN Career Development Award. Study co-authors are Lifu Wang, Chelsea Combs, Therese B. Deramaudt, and Anil K. Rustgi from Penn, as well as Asha S. Multani and Sandy Chang, from M.D. Anderson Cancer Center, and Ralph H. Hruban from Johns Hopkins University.



Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Disease Progression Model Of Pancreatic Cancer Developed By Penn Researchers." ScienceDaily. ScienceDaily, 19 May 2005. <www.sciencedaily.com/releases/2005/05/050519142409.htm>.
University of Pennsylvania School of Medicine. (2005, May 19). Disease Progression Model Of Pancreatic Cancer Developed By Penn Researchers. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2005/05/050519142409.htm
University of Pennsylvania School of Medicine. "Disease Progression Model Of Pancreatic Cancer Developed By Penn Researchers." ScienceDaily. www.sciencedaily.com/releases/2005/05/050519142409.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
CDC Calls for New Ebola Safety Guidelines

CDC Calls for New Ebola Safety Guidelines

AP (Oct. 20, 2014) Centers for Disease Control and Prevention Director Dr. Tom Frieden laid out new guidelines for health care workers when dealing with the deadly Ebola virus including new precautions when taking off personal protective equipment. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins