Featured Research

from universities, journals, and other organizations

Like The Famous Doughboy, Nanotubes Give When You Poke 'Em

Date:
May 22, 2005
Source:
Georgia Institute Of Technology
Summary:
Researchers find nanotubes exhibit radial elasticity, an important finding for the development of nanoelectronics.

Using an atomic force microscope, researchers prodded the nanotubes to see how much they give.
Credit: Image courtesy of Georgia Institute Of Technology

Atlanta (May 17, 2005) — Smaller, faster computers, bullet proof t-shirts and itty-bitty robots, such are the promises of nanotechnology and the cylinder-shaped collection of carbon molecules known as nanotubes. But in order for these exciting technologies to hit the marketplace (who wouldn’t want an itty-bitty robot), scientists must understand how these miracle-molecules perform under all sorts of conditions. For, without nanoscience, there would be no nanotechnology.

In a recent study, researchers at the Georgia Institute of Technology, along with colleagues from the IBM Watson Research Center and the Ecole Polytechnique Federale de Lausanne in Switzerland, found that while nanotubes are extremely stiff when pulled from the ends, they give when poked in the middle. The larger the radius, the softer they become. The finding, which is important for the development of nanoelectronics, is published in the May 6, 2005 edition of the journal Physical Review Letters.

“We know from previous studies that nanotubes are very stiff in the axial direction (end to end) but very little is known about their radial elasticity, mainly because when you’re working with tubes that small it’s very difficult to poke them without pushing them beyond the point where they will be irremediably damaged,” said Elisa Riedo, assistant professor of physics at Georgia Tech.

Using an atomic force microscope (AFM) and testing it with a tip of 35 nanometers in radius, researchers lightly prodded the nanotubes to measure the elasticity.

“By making a very small indentation in the tubes, we were able to measure the radial elasticity of a number of single and multiwalled carbon nanotubes of different radii. What we found was that as we tested this technique with wider and wider nanotubes, the bigger tubes were much less stiff than the smaller tubes,” said Riedo.

Riedo and colleagues began with a single-walled nanotube with a radius of only 0.2 nanometers and slowly inched, or rather nanometered, their way up to multiwalled nanotubes measuring 12 nanometers in radius. They tested 39 nanotubes in all.

“We started with single-walled nanotubes and then measured tubes with an increasing number of layers, keeping the external radius twice as large as internal radius,” said Riedo. “Our experiments show that for nanotubes with small internal radii, increasing the radii makes them softer. This means that for these tubes, the radial rigidity is controlled by the magnitude of the internal radius, whereas the number of layers plays a minor role.”

But, for the nanotubes with larger radii, the elasticity of the nanotubes is almost constant. This could mean that the softening that occurs as the internal radius of a nanotube is increased, is counterbalanced by the stiffening effect that occurs as the number of layers increases, up to the point at which the nanotube’s properties reach those of graphite, she said.

Understanding just how much these nanotubes of various sizes and layers can bend is an important step in the development of nanoelectronics and the nanowires that carry electrical current through them. Recently, a team of scientists at the University of California, Irvine, demonstrated that transistors made of single-walled nanotubes can operate at much faster speeds than traditional transistors. Knowing just how far these tubes can bend may lead to even more efficient nanowires.

Since the team kept the external radius twice the distance as the tubes’ internal radius in this round of tests, Riedo said the next step is to change this ratio and vary the number of layers, while keeping the internal radius constant and vice-versa to see how these changes affect the tubes’ elastic properties.


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "Like The Famous Doughboy, Nanotubes Give When You Poke 'Em." ScienceDaily. ScienceDaily, 22 May 2005. <www.sciencedaily.com/releases/2005/05/050522112453.htm>.
Georgia Institute Of Technology. (2005, May 22). Like The Famous Doughboy, Nanotubes Give When You Poke 'Em. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2005/05/050522112453.htm
Georgia Institute Of Technology. "Like The Famous Doughboy, Nanotubes Give When You Poke 'Em." ScienceDaily. www.sciencedaily.com/releases/2005/05/050522112453.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins