Featured Research

from universities, journals, and other organizations

Disabling Gene Defuses Rheumatoid Arthritis In Mice

Date:
May 22, 2005
Source:
Washington University School of Medicine
Summary:
Scientists studying mice have identified a gene that allows immune cells known as neutrophils to protect themselves from the inflammatory chemicals they secrete. The researchers showed that knocking the gene out in mice prevented the development of an arthritis-like disorder by making the neutrophils victims of their own damaging secretions.

May 12, 2005 — Scientists studying mice have identified a gene that allows immune cells known as neutrophils to protect themselves from the inflammatory chemicals they secrete.

Researchers at Washington University School of Medicine in St. Louis showed that knocking the gene out in mice prevented the development of an arthritis-like disorder by making the neutrophils victims of their own damaging secretions.

The newly identified role for the gene, Foxo3a, may open a new window for treating arthritic conditions caused by immune dysfunction. Currently, most treatments in development for these disorders focus either on preventing wayward immune cells from attacking the joints or on reducing the ability of these cells to open fire. The new results suggest it may be just as helpful to let these cells kill themselves and each other.

"We already know a great deal about Foxo3a from studies of its role in some cancers, and hopefully that puts us in a good position to devise ways to manipulate its activity," says senior author Stanford Peng, M.D., Ph.D., assistant professor of medicine and of pathology and immunology. "If the human version of this gene functions in a similar fashion, modifying its activity may be a useful approach for arthritis therapy even when the disease is already well underway."

Peng and colleagues will publish their results in the June issue of Nature Medicine.

Rheumatoid arthritis, the most prevalent autoimmune form of arthritis, afflicts approximately 2.1 million Americans or about 1 percent of the population. Women are two to three times more likely to develop the disorder than men. Symptoms often occur in episodic bursts and may include morning stiffness, fatigue and joint and muscle pain. In severe cases, rheumatoid arthritis can damage cartilage, tendons, ligaments and bone, leading to joint deformity and instability.

Rheumatoid arthritis has long been recognized as a condition that involves defensive cells from the body's immune system mistakenly attacking healthy joint tissues. Scientists once thought the cells that were most active in these attacks were adaptive immune cells including T cells. Most of these cells are like guided missiles: they get a fix on a specific target, pursue it and attack it.

"Classically, everyone thought that the T cells somehow recognized something specific in the joint like collagen or some other protein and attacked it," Peng explains. "In recent years, though, it's become more accepted that rheumatoid arthritis is also the result of a less specific but still harmful inflammation generated by cells from the other branch of the immune system, the innate immune system."

Innate immune cells such as neutrophils respond rapidly to invaders and normally comprise the body's frontline defenses against bacterial infection.

Peng became interested in Foxo3a because of prior studies his research team had conducted on a related gene, Foxj1. Both genes belong to the forkhead family of genes, which regulates the activity of other genes and has been connected to cancer and longevity. Last year Peng found that knocking out Foxj1 produced a lupus-like condition in mice.

Foxj1 and Foxo3a are thought to play similar roles in immune T cells. To get a better sense for Foxo3a's activities, Peng's group created a line of mice where Foxo3a had been disabled and studied the effects this change had on T cells.

As a follow-up, Peng decided to inject the new line of mice with antibodies that normally induce a condition like rheumatoid arthritis. But the mice remained healthy even after the injections.

"It was a surprise finding," Peng says. "We really didn't expect to see this kind of response."

Further study revealed that neutrophils in the mice were killing themselves through a cellular self-destruct process known as apoptosis. Damaged or highly stressed cells can pull their own plug in this or a similar manner to prevent themselves from becoming cancerous.

"It seems that evolution has somehow provided protective mechanisms for innate immune cells when they go into the hazardous inflammatory environments they create," Peng notes. "They need ways to keep themselves alive, and Foxo3a is one of those ways."

Peng's group is currently trying to discern more details of Foxo3a's activities in neutrophils, including the pathways the gene activates to block apoptosis. They will also be looking for drugs that inhibit Foxo3a and testing them in the mice as potential anti-arthritis drugs.

###

Jonsson H, Allen P, Peng SL. "Inflammatory arthritis requires Foxo3a to prevent Fas ligand-induced neutrophil apoptosis." Nature Medicine, June 2005.

Funding from Washington University School of Medicine, the National Institutes of Health, the Arthritis Foundation, and the Lupus Research Institute supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School of Medicine. "Disabling Gene Defuses Rheumatoid Arthritis In Mice." ScienceDaily. ScienceDaily, 22 May 2005. <www.sciencedaily.com/releases/2005/05/050522113026.htm>.
Washington University School of Medicine. (2005, May 22). Disabling Gene Defuses Rheumatoid Arthritis In Mice. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2005/05/050522113026.htm
Washington University School of Medicine. "Disabling Gene Defuses Rheumatoid Arthritis In Mice." ScienceDaily. www.sciencedaily.com/releases/2005/05/050522113026.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins