Featured Research

from universities, journals, and other organizations

Duke Engineers Develop New 3-D Cardiac Imaging Probe

Date:
May 27, 2005
Source:
Duke University / Pratt School of Engineering
Summary:
Biomedical engineers at Duke University's Pratt School of Engineering have created a new three-dimensional ultrasound cardiac imaging probe. Inserted inside the esophagus, the probe creates a picture of the whole heart in the time it takes for current ultrasound technology to image a single heart cross section.

DURHAM, N.C. -- Biomedical engineers at Duke University's Pratt School of Engineering have created a new three-dimensional ultrasound cardiac imaging probe. Inserted inside the esophagus, the probe creates a picture of the whole heart in the time it takes for current ultrasound technology to image a single heart cross section.

The new probe has considerable potential not only for evaluating the condition of the heart, but also for use in guiding therapeutic treatment devices, the researchers said. The new Duke probe can also be used to image the esophagus, rectum, colon and prostate.

A peer-reviewed report on the work was published this month in volume 26 issue number 4 of the journal Ultrasonic Imaging. (Note: Because the journal's publication is backlogged, the issue date is 2004.)

The research is funded by the Heart, Lung and Blood Institute at the National Institutes of Health and by the National Science Foundation.

One form of ultrasound cardiac imaging, called transesophageal echocardiography (TEE), is conducted on hundreds of people each day in the United States. The technique entails inserting a probe down the patient's throat and behind the heart to capture ultrasound heart images. The images can reveal the condition of the heart chambers, valves, major blood vessels and heart tissue. TEE is a safe and fast diagnostic technique.

However, current TEE systems can quickly generate only two-dimensional cross-sectional images. This limitation makes it impractical for use in guiding therapeutic treatment devices such as ablation probes that burn off damaged cells that cause an irregular heart beat. Clinicians must repeatedly and painstakingly reposition the 2-D probe during treatments so, instead, they use fluoroscopy (X-ray movies) to guide the placement of the treatment devices. However, the use of X-ray imaging results in radiation exposure for patients and requires bulky lead-shielding garments for clinicians. In addition, such procedures take up to seven hours to complete.

Biomedical engineering professor Stephen Smith, who specializes in ultrasound imaging, said a move to three-dimensional imaging is the next logical step.

"Three-D ultrasound is already an established technology in many hospitals," Smith said. "With our new real-time 3-D transesophageal probe, we have all the benefits of the 2-D TEE probe and none of the drawbacks. We can generate sharp, high-contrast images of the whole heart and position heart catheters and ablation devices at the same time. We have already done so in laboratory tests on animals."

Smith and his team, including biomedical engineering graduate student Chris Pua, developed the probe specifically for use in hospitals and clinics. For example, they used the outer casing of a commercially available 2-D TEE probe to house their new 3-D model. The casing design already has been tested and approved for use.

The new Duke 3-D probe is tipped with a dime-sized array of 504 individual ultrasound sensors. Each sensor is as wide as a few human hairs. "It took a craftsman to create this probe," said Smith. "Not many graduate students could have done what Chris Pua has done."

"Maintaining the size of normal TE probes was a main factor in the design since 3-D imaging inherently requires significantly more sensors than 2-D imaging," said Pua. "The original casing held enough cabling for 64 transducer elements whereas our design successfully incorporates 8 times that number."

The probe generates ultrasound at 5 million vibrations per second, which, combined with the 504 sensors, provides great sensitivity and a sharp image, Smith said. And because the image is large enough to encompass the whole volume of the heart, fewer "pictures" need to be taken. This may shorten patient time in clinics, he said.


Story Source:

The above story is based on materials provided by Duke University / Pratt School of Engineering. Note: Materials may be edited for content and length.


Cite This Page:

Duke University / Pratt School of Engineering. "Duke Engineers Develop New 3-D Cardiac Imaging Probe." ScienceDaily. ScienceDaily, 27 May 2005. <www.sciencedaily.com/releases/2005/05/050526133959.htm>.
Duke University / Pratt School of Engineering. (2005, May 27). Duke Engineers Develop New 3-D Cardiac Imaging Probe. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2005/05/050526133959.htm
Duke University / Pratt School of Engineering. "Duke Engineers Develop New 3-D Cardiac Imaging Probe." ScienceDaily. www.sciencedaily.com/releases/2005/05/050526133959.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins