Featured Research

from universities, journals, and other organizations

NCAR Researcher Sheds Light On Solar Storms

Date:
May 26, 2005
Source:
National Center for Atmospheric Research/University Corporation for Atmospheric Research
Summary:
New research from the National Center for Atmospheric Research links a particular magnetic structure on the Sun with the genesis of powerful solar storms that can buffet Earth's atmosphere. The research may enable scientists to eventually forecast the storms, known as coronal mass ejections, days before they occur.

Sarah Gibson struck a pose for the camera as she gazed at her first solar eclipse in 1991. Behind her on the far left is NCAR's Mauna Loa Solar Observatory, the home of state-of-the-art coronameters to capture detailed images of the Sun's outermost region.
Credit: Image courtesy of National Center for Atmospheric Research/University Corporation for Atmospheric Research

BOULDER - New research from the National Center for Atmospheric Research (NCAR) links a particular magnetic structure on the Sun with the genesis of powerful solar storms that can buffet Earth's atmosphere. The research may enable scientists to create more accurate computer models of the solar storms, known as coronal mass ejections (CMEs), and could eventually point the way to forecasting the storms days before they occur.

Related Articles


Sarah Gibson, a scientist at NCAR's High Altitude Observatory (HAO), will present her findings at the American Geophysical Union conference in New Orleans on Thursday, May 26. Her invited talk is in recognition of winning this year's Karen Harvey Prize. Awarded by the Solar Physics Division of the American Astronomical Society, the prize recognizes an early-career scientist who has produced exceptional solar research. CMEs are a focus of solar research because they suddenly and violently release billions of tons of matter and charged particles that escape from the Sun and speed through space. Ejections pointed toward Earth can set off disturbances when they reach the upper atmosphere, affecting satellites, ground-based communications systems, and power grids.

For her research, Gibson turned to a unique data set: white-light images of the lower reaches of the Sun's enormous halo, called the corona. Taken by NCAR's Mark-IV K-Coronameter on Mauna Loa in Hawaii, the images are sensitive to density alone, avoiding the ambiguity of most other solar images that depend on both temperature and density. The images revealed that lower-density regions in the corona consistent with twisted magnetic field lines can form prior to a CME. The twisted areas, known as magnetic flux ropes, store massive amounts of energy.

"The structures indicate a magnetic system that has enough energy to fuel a CME," Gibson explains. "But their presence is not, by itself, an indication that a CME is about to occur. For that, we need to look at additional characteristics."

The research may put to rest an important debate among solar physicists over whether magnetic flux ropes can form prior to an ejection or are merely present when an ejection takes place. Gibson's findings suggest that, to understand the forces that create CMEs, solar scientists should use magnetic flux ropes as starting points for computer models of the massive storms.

To conduct her study, Gibson used Mark-IV images to observe dark, lower-density areas, known as cavities, that can be formed by the strong, sheared magnetic fields of magnetic flux ropes. She and NCAR colleagues analyzed 13 cavity systems from November 1999 to January 2004. Seven of these systems could be associated with CMEs, and four cavities were directly observed by the coronameter to erupt as CMEs. Gibson used a second technique to identify an additional eight CMEs that erupted from already-formed cavities. She found those cases by gathering images of CMEs and backtracking to see whether cavities existed at those CME sites before each eruption.

One of Gibson's next steps will be to analyze cavities that result in CMEs to determine whether they have identifiable characteristics that may help scientists forecast a CME. Her preliminary findings indicate that a cavity begins to bulge and rise higher in the corona just before erupting. Cavities may also darken and become more sharply defined prior to eruption.

Gibson will also try to determine how widespread cavities are, and if it is possible that most, or even all, CMEs are preceded by the formation of magnetic flux ropes. Beginning next year, she will supplement the Mauna Loa observations with data from a pair of new NASA satellites, known as STEREO (Solar Terrestrial Relations Observatory). Instruments aboard STEREO will provide stereoscopic measurements and 24-hour coverage of the lower solar corona, significantly increasing the chances of directly observing cavities erupting into CMEs.


Story Source:

The above story is based on materials provided by National Center for Atmospheric Research/University Corporation for Atmospheric Research. Note: Materials may be edited for content and length.


Cite This Page:

National Center for Atmospheric Research/University Corporation for Atmospheric Research. "NCAR Researcher Sheds Light On Solar Storms." ScienceDaily. ScienceDaily, 26 May 2005. <www.sciencedaily.com/releases/2005/05/050526135634.htm>.
National Center for Atmospheric Research/University Corporation for Atmospheric Research. (2005, May 26). NCAR Researcher Sheds Light On Solar Storms. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2005/05/050526135634.htm
National Center for Atmospheric Research/University Corporation for Atmospheric Research. "NCAR Researcher Sheds Light On Solar Storms." ScienceDaily. www.sciencedaily.com/releases/2005/05/050526135634.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins