Featured Research

from universities, journals, and other organizations

Nanotechnology Combined With Superconductivity Could Pave The Way For 'Spintronics'

Date:
June 1, 2005
Source:
National Science Foundation
Summary:
As the ever-increasing power of computer chips brings us closer and closer to the limits of silicon technology, many researchers are betting that the future will belong to "spintronics": a nanoscale technology in which information is carried not by the electron's charge, as it is in conventional microchips, but by the electron's intrinsic spin.

This still from a video shows the magnetic field (green), which can thread through the superconducting layer only pinching itself down into an array of nanoscale flux tubes (green columns). The field in each flux tube is very intense, and extends right through the DMS layer. As it does, it forces a patch of electron spins to fall into line (red arrows). It also causes a certain amount of electric charge to accumulate (yellow).
Credit: Dr. Ovidiu Toader, University of Toronto

As the ever-increasing power of computer chips brings us closer and closer to the limits of silicon technology, many researchers are betting that the future will belong to "spintronics": a nanoscale technology in which information is carried not by the electron's charge, as it is in conventional microchips, but by the electron's intrinsic spin.

Related Articles


If a reliable way can be found to control and manipulate the spins, these researchers argue, spintronic devices could offer higher data processing speeds, lower electric consumption, and many other advantages over conventional chips--including, perhaps, the ability to carry out radically new quantum computations.

Now, University of Notre Dame physicist Boldizsar Janko and his colleagues believe they have found such a control technique. Their work, funded by the National Science Foundation through a Nanoscale Interdisciplinary Research Team grant, was published in the March 5, 2005, edition of the journal Nature.

The idea is to create the device as a series of layers, each only a few dozen nanometers thick. At the base is a layer of diluted magnetic semiconductor, a type of material Janko and his group have been studying intensively. When gallium arsenide is doped with manganese atoms, for example, each manganese atom contributes an extra electron, and thus an extra electron spin; the result is a semiconductor material that can be magnetized in much the same way as iron. Then an insulator material is layered over the base, followed by a layer of superconducting material.

Next, a magnetic field is applied perpendicular to the top surface (see animation above). Thanks to the basic physics of superconductors, the field can make it through only by pinching itself down into an array of nanoscale flux tubes. That super concentrates the field inside each tube, so that it creates a spot of high-intensity magnetism on the semiconductor layer below, which, in turn, creates a patch of closely aligned electron spins. The resulting spin patches, one for each flux tube, are then available for encoding information.

The effect resembles what happens when you sprinkle iron filings on a piece of paper, and then hold a bar magnet underneath, says Janko: the presence of the magnet (the flux tube) makes the iron filings (the spins) stand at attention. Furthermore, he says, just as you can manipulate the filings by moving the magnet underneath the paper, you can manipulate the spins in this system by moving the flux tubes.

For example, an electric current flowing through the superconductor will cause a given flux tube to move to one side (with the patch of spins underneath moving along with it), while a current flowing in the reverse direction will move it back to the other side (see animation at right).

Although Janko and his colleagues have tested their approach so far only through computer simulations, experiments are now underway to demonstrate the technique in the laboratory.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Nanotechnology Combined With Superconductivity Could Pave The Way For 'Spintronics'." ScienceDaily. ScienceDaily, 1 June 2005. <www.sciencedaily.com/releases/2005/05/050527110331.htm>.
National Science Foundation. (2005, June 1). Nanotechnology Combined With Superconductivity Could Pave The Way For 'Spintronics'. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2005/05/050527110331.htm
National Science Foundation. "Nanotechnology Combined With Superconductivity Could Pave The Way For 'Spintronics'." ScienceDaily. www.sciencedaily.com/releases/2005/05/050527110331.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins