Featured Research

from universities, journals, and other organizations

New Advances May Slow Tumor Growth In Pancreatic Cancer

Date:
June 11, 2005
Source:
Dartmouth Medical School
Summary:
Researchers at Dartmouth Medical School have found a promising key that may open doors to future treatments in pancreatic and other forms of cancer. The innovation lies in manipulating an overabundance of chemo-resistant molecules in pancreatic cancer that inactivate pathways that would normally suppress cell growth.

HANOVER, NH -- Making new strides in their ongoing effort to understand mechanisms behind the relentless growth of cancer cells, researchers at Dartmouth Medical School have found a promising key that may open doors to future treatments in pancreatic and other forms of cancer. The innovation lies in manipulating an overabundance of chemo-resistant molecules in pancreatic cancer that inactivate pathways that would normally suppress cell growth.

Related Articles


Published in the June 10 issue of the Journal of Biological Chemistry, the study was led by Dr. Murray Korc, a pioneer in early research on growth factor receptors in pancreatic cancer, and chair of the department of medicine at Dartmouth Medical School (DMS) and Dartmouth-Hitchcock Medical Center, and a member of the Norris Cotton Cancer Center. His team's research has focused on suppressing pancreatic tumor growth by determining the mechanisms that enable the cells to grow so quickly.

"Pancreatic cancer is an incredibly resilient and aggressive disease," said Korc. "It grows quickly without causing symptoms, is resistant to chemotherapy, has a strong tendency to metastasize, and patients are often beyond surgery when it is diagnosed."

This study builds on the team's prior research on a molecule called Smad7, found in half of all human pancreatic cancers. Smad7 lies in pathways that normally play an important role in regulating cell growth and often prevents cells when proliferating too quickly. But Smad7 interferes with these pathways that are normally regulated by TGF-beta molecules, so they cannot regulate the growth of cells, and these cells continue to grow unchecked until they eventually become tumors.

"Previously, we found that Smad7 blocks the ability of TGF-beta to inhibit the growth of these cancer cells," said study co-author Dr. Nichole Boyer Arnold, a postdoctoral fellow at DMS and a member of the Norris Cotton Cancer Center. "In this study, we discovered that Smad7 is able to do this by suppressing the function of the retinoblastoma (RB) protein." The RB protein is crucial to empowering TGF-beta to control cell growth.

DMS researchers also found that pancreatic cancer cells generate TGF-beta molecules at a much faster rate than normal. "It's a devilish mechanism," explains Korc. "Smad7 not only prevents TGF-beta molecules from slowing the cancer down, but enables them to multiply at a high rate, and thus gives the cancer another growth benefit. In addition, TGF-beta molecules are still able to stimulate blood vessel formation and enhance the growth of adjoining cells, which further increases the cancer's ability to metastasize."

Korc likens the process to a scorpion that not only has a newfound immunity to his own poison, but every time he stings himself, he gets bigger and more powerful.

"Now that we know how Smad7 is able to inactivate TGF-beta growth suppressive effects by preventing RB from functioning properly, we can focus our research on the RB protein," said Korc. They hope to find a way to disrupt Smad7's ability to affect the RB protein in human pancreatic cancers. Of the 31,000 people in the US that get pancreatic cancer this year, 30,300 will die from it, according to Korc, and most patients die within six months, which is why these advances in new therapies are so important.

He notes that even if his lab is able to overcome these problems in RB, it will not lead to a "cure" for pancreatic cancer. Pancreatic patients are under attack from so many different directions that the answer will not lie in one particular aspect of therapy. The authors hope that their work will add to a growing arsenal of treatments that, when combined in a form of therapy individualized to each patient, will have an impact on this devastating disease.

###

This study was funded by the National Institutes of Health and by a postdoctoral fellowship from the George E. Hewitt Foundation for Medical Research.


Story Source:

The above story is based on materials provided by Dartmouth Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth Medical School. "New Advances May Slow Tumor Growth In Pancreatic Cancer." ScienceDaily. ScienceDaily, 11 June 2005. <www.sciencedaily.com/releases/2005/06/050609233643.htm>.
Dartmouth Medical School. (2005, June 11). New Advances May Slow Tumor Growth In Pancreatic Cancer. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2005/06/050609233643.htm
Dartmouth Medical School. "New Advances May Slow Tumor Growth In Pancreatic Cancer." ScienceDaily. www.sciencedaily.com/releases/2005/06/050609233643.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins