Featured Research

from universities, journals, and other organizations

Joslin Scientists Confirm Link Between PKC Enzyme And Kidney Disease In Diabetes

Date:
June 12, 2005
Source:
Joslin Diabetes Center
Summary:
Scientists at Joslin Diabetes Center have investigated PKC-beta - a critical enzyme implicated in the devastating complications of type 1 and type 2 diabetes - for more than two decades.

BOSTON - Scientists at Joslin Diabetes Center have investigated PKC-beta - a critical enzyme implicated in the devastating complications of type 1 and type 2 diabetes - for more than two decades. Their latest research, to be presented June 11 at the American Diabetes Association's (ADA) 65th Scientific Sessions in San Diego, Calif., confirms the link between hyperglycemia (high blood glucose), overexpression of PKC-beta 2 and kidney disease.

The poster is one of 89 presentations Joslin scientists will deliver at the ADA Scientific Sessions, to be held Friday, June 10, through Tuesday, June 14 at the San Diego Convention Center. Some 13,000 scientists, physicians and health professionals from around the world will attend the conference, to be held at the San Diego Convention Center. (Abstract Number: 849-P)

"The significance of this study is that we found strong evidence linking chronic activation of a specific form of the PKC enzyme - beta 2 - to the abnormal kidney changes and oxidative stress seen in diabetes," said George L. King, M.D., the study's lead author, Joslin's Director of Research, Head of the Section on Vascular Cell Biology, and a Professor of Medicine at Harvard Medical School. Other investigators in the study included previous Joslin fellows Yutaka Yasuda, M.D., Ph.D., and Noriko Takahara, M.D., as well as Timothy S. Kern, Ph.D., of Case Western Reserve Medical School, Cleveland, Ohio.

Protein kinase C (PKC) is an enzyme essential to the normal functions of the cell and the body. The PKC family of enzymes, which helps regulate many blood vessel functions, comprises about a dozen different molecular forms, or isoforms, including PKC-alpha, PKC-beta 1, PKC-beta 2 and PKC-delta.

In this study, Dr. King and his colleagues proposed that chronic activation or overexpression of the PKC-beta 2 isoform plays an important role in the progression of diabetic kidney disease. To test this hypothesis, researchers used genetic engineering techniques to develop mice that expressed three times the normal amount of PKC-beta 2 in tiny blood vessels.

"Using transgenic mice, we targeted the specific isoform, PKC-beta 2, to the blood vessels to test our hypothesis," said Dr. King. "By manipulating the gene that makes this isoform, we created mice that overexpressed only PKC-beta 2 which mimics the effects of high glucose levels and diabetes."

Dr. King and his team compared these transgenic "overexpressors" with normal mice - in both diabetic and nondiabetic mice models - using conventional screening and diagnostic tests to assess the progression of kidney disease in each model.

In diabetes, hyperglycemia overactivates PKC-beta and gradually damages the microvessels of the kidney. Over time, tiny capillaries known as glomeruli become so porous they can no longer adequately filter waste from the blood, and instead allow large proteins such as albumin to pass into the urine (an early sign of kidney damage).

In this study, albumin levels were tenfold higher in overexpressors of PKC-beta 2 than in normal mice after six weeks. At six months of age, although the two groups of mice did not differ in filtration rate, 24 percent of the glomeruli of the overexpressors showed mesangial expansion (enlargement of specialized kidney cells, another measure of kidney disease) compared with only 8.9 percent of normal mice. In the diabetic models, 49 percent of the glomeruli of overexpressors showed mesangial expansion compared with 32 percent of the normal-expressing mice. Finally, oxidative stress - the accumulation of destructive molecules, such as free radicals - was three times higher in the nondiabetic PKC beta 2 transgenic mice than in normal mice.

These findings demonstrate that chronic activation of the PKC-beta 2 isoform, induced by hyperglycemia, is at least partially responsible for the development of abnormal changes in the kidney and the increase in oxidative stress associated with diabetes.

Dr. King and his team were the first to propose, in the late 1980s, that PKC is the major signaling pathway stimulated by hyperglycemia, the hallmark of diabetes. Since then, dozens of studies in the King Laboratory have investigated the role of PKC in blood vessel damage of the eye, kidney, heart and large arteries - organs that can deteriorate over time in people with diabetes, leading to complications such as blindness, heart disease and kidney failure.

In the early 1990s, Dr. King began working with other scientists to design a chemical inhibitor that would block PKC and therefore delay the onset of symptoms or prevent diabetic kidney disease and other complications altogether. To learn more about Joslin Diabetes Center's leadership role in PKC research, please click on the following link to background information on Joslin's Website: http://www.joslin.org/news/pkcresearch.shtml

###

About Joslin Diabetes Center

Joslin Diabetes Center, dedicated to conquering diabetes in all of its forms, is the global leader in diabetes research, care and education. Founded in 1898, Joslin is an independent nonprofit institution affiliated with Harvard Medical School. Joslin research is a team of more than 300 people at the forefront of discovery aimed at preventing and curing diabetes. Joslin Clinic, affiliated with Beth Israel Deaconess Medical Center in Boston, the nationwide network of Joslin Affiliated Programs, and the hundreds of Joslin educational programs offered each year for clinicians, researchers and patients, enable Joslin to develop, implement and share innovations that immeasurably improve the lives of people with diabetes. As a nonprofit, Joslin benefits from the generosity of donors in advancing its mission. For more information on Joslin, call 1-800-JOSLIN-1 or visit www.joslin.org.


Story Source:

The above story is based on materials provided by Joslin Diabetes Center. Note: Materials may be edited for content and length.


Cite This Page:

Joslin Diabetes Center. "Joslin Scientists Confirm Link Between PKC Enzyme And Kidney Disease In Diabetes." ScienceDaily. ScienceDaily, 12 June 2005. <www.sciencedaily.com/releases/2005/06/050612110743.htm>.
Joslin Diabetes Center. (2005, June 12). Joslin Scientists Confirm Link Between PKC Enzyme And Kidney Disease In Diabetes. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2005/06/050612110743.htm
Joslin Diabetes Center. "Joslin Scientists Confirm Link Between PKC Enzyme And Kidney Disease In Diabetes." ScienceDaily. www.sciencedaily.com/releases/2005/06/050612110743.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins