Featured Research

from universities, journals, and other organizations

Bottom Quarks Reveal Something Of Their Identity

Date:
July 11, 2005
Source:
Netherlands Organization for Scientific Research
Summary:
Dutch researcher Bram Wijngaarden investigated how bottom quarks are created during collisions between protons and antiprotons. Wijngaarden's measurements have contributed to a better understanding of the theory, and can be used to explain why the production of these quarks during such collisions is higher than had originally been expected.

Dutch researcher Bram Wijngaarden investigated how bottom quarks are created during collisions between protons and antiprotons. Wijngaarden's measurements have contributed to a better understanding of the theory, and can be used to explain why the production of these quarks during such collisions is higher than had originally been expected.

Bram Wijngaarden investigated the creation of bottom quarks using the D zero experiment of the particle accelerator at the Fermi lab in Chicago, United States. In this Tevatron particle accelerator, protons and antiprotons collide with each other. Bottom quarks are created as a result of the strong nuclear force that arises during these collisions. In the 1990s measurements with the Tevatron particle accelerator and with the Hera particle accelerator in Hamburg revealed that the production of bottom quarks was higher than had been theoretically predicted. Since then theoretical physicists have done a lot of work to explain the difference. Wijngaarden's measurements must reveal whether the theory provides a good description of the reality.

Bottom quarks

Bottom quarks are created during high-energy collisions between particles. The bottom quark is one of six quarks. Together with the top quark it is one of the heaviest quarks. These quarks are only found under extreme circumstances, such as during collisions between particles. After the collision the bottom quarks decay into other particles. Measuring devices detect the electrical signals left behind by the particles. Signals from the decay products of the bottom quarks can be distinguished from the other particles released because bottom quarks are heavier and on average breakdown slightly less quickly.

By measuring the angle between two bottom quarks from the same collision, Wijngaarden could study the strong nuclear force directly. This angle was measured as the angle between the avalanches from the decay products of the bottom quarks. In the first-order approach, the theory predicts that the two bottom quarks always move apart from each other at an angle of 180 degrees. Wijngaarden showed that in a number of cases the angle is much smaller. The second-order approach predicts that the angle is much smaller in a number of cases but the average size of the angle measured by the researcher differed from the result obtained using this approach. The strong nuclear force can be tested more accurately with new measurements made with the help of methods developed by Wijngaarden.

Bram Wijngaarden's research was funded by NWO.


Story Source:

The above story is based on materials provided by Netherlands Organization for Scientific Research. Note: Materials may be edited for content and length.


Cite This Page:

Netherlands Organization for Scientific Research. "Bottom Quarks Reveal Something Of Their Identity." ScienceDaily. ScienceDaily, 11 July 2005. <www.sciencedaily.com/releases/2005/07/050711014948.htm>.
Netherlands Organization for Scientific Research. (2005, July 11). Bottom Quarks Reveal Something Of Their Identity. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2005/07/050711014948.htm
Netherlands Organization for Scientific Research. "Bottom Quarks Reveal Something Of Their Identity." ScienceDaily. www.sciencedaily.com/releases/2005/07/050711014948.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins