Featured Research

from universities, journals, and other organizations

Biologists See Combined Structure Of Cold Virus And Receptor Molecule

Date:
July 14, 2005
Source:
Purdue University
Summary:
Biologists have determined the combined structure of a common-cold virus attached to a molecule that enables the virus to infect its host, and findings will appear in the July issue of the journal Structure.

This composite image shows the combined structure of Coxsackievirus A21 and a "receptor molecule" called ICAM-1, or intracellular adhesion molecule 1. The virus is one of the viruses that causes the common cold, and the receptor molecule enables the virus to attach to and infect host cells. ICAM-1, located on the surfaces of cells, is represented in blue, and the virus is represented as red. Researchers at Purdue University have determined the structure of the virus-molecule complex by combining images taken using X-ray crystallography and cryo-electron microscopy. (Graphic/Department of Biological Sciences, Purdue University)

WEST LAFAYETTE, Ind. – Biologists at Purdue University have determined the combined structure of a common-cold virus attached to a molecule that enables the virus to infect its host, information that ultimately may help researchers develop methods for treating certain viral infections.

Coxsackievirus A21 infects host cells first by recognizing a "receptor molecule" called ICAM-1, which is located on the cell's surface, and then by anchoring itself to the molecule. ICAM-1 stands for intracellular adhesion molecule 1.

"ICAM-1 is the same receptor molecule used by the vast majority of viruses that cause the common cold," said Chuan Xiao, a doctoral student who is leading the research in the laboratory of Michael Rossmann, the Hanley Distinguished Professor of Biological Sciences in Purdue's College of Science.

Findings will appear in the July issue of the journal Structure.

"The real objective of this work is to study the whole complex of ICAM-1 and the virus as a single entity," Rossmann said. "Being able to characterize the combined structure of the virus and ICAM-1 will teach us how the virus recognizes a particular kind of molecule and how it then anchors to the cell, which represents the initial stages of infection."

Ultimately, researchers are trying to learn more about the binding mechanisms because such knowledge might eventually lead to new treatments.

"One of the many different ways of inhibiting viral infection is to stop the virus from binding to cells," Rossmann said. "That has not been our objective in this case. We just want to learn how this virus infects its host cell. In other words, how does the virus get into the host?"

Coxsackievirus A21 is one of several viruses that cause the common cold.

The researchers used two methods to learn the structure of the virus-molecule complex. One method, a technique called X-ray crystallography, yielded images of the virus with a resolution of 2.5 angstroms, which is nearly fine enough to see individual atoms. Using this technique, researchers create crystals of a substance, in this case the virus. Then, X-rays are passed through the crystals, creating a "diffraction pattern" that can be interpreted with various computational procedures to produce an image.

The other method, a powerful imaging tool called cryo-electron microscopy, was used to determine the entire three-dimensional structure of the virus-molecule complex. With this technique, specimens are first frozen before they are studied with an electron microscope. Cryo-electron microscopy enables scientists to study details as small as 8 angstroms, resolution high enough to see groups of atoms. An angstrom is one ten-billionth of a meter, or roughly a millionth as wide as a human hair.

"The electron microscopy is necessary for studying the entire complex because you can't crystallize the complex of ICAM-1 and the virus," Rossmann said. "That's because crystallization often takes days, weeks or months, but the complex is only stable for hours, which means it doesn't stay together long enough to crystallize."

The researchers pieced together the overall structure of the virus and ICAM-1 by combining the high-resolution X-ray crystallography images of the virus with the lower resolution electron microscope view.

The findings represent the first time researchers have seen fine details of the complex's structure.

"It's important to see the shape of the complex because that could tell us how the virus recognizes the host cell," Rossmann said. "Knowing the structure might also reveal the initial stages of what happens after attachment, and indeed there probably are different steps in the attachment process.

"The receptor apparently binds into what we call a canyon, which is a surface depression on the virus, and it might do that in at least two different steps. Perhaps it binds once loosely on the surface, and then it might bind again deeply into the canyon to strengthen its attachment."

The research paper was written by Xiao; Carol M. Bator-Kelly, a technical assistant in Rossmann's lab; Elizabeth Rieder, a technical assistant for Eckard Wimmer, a virologist at the State University of New York at Stony Brook; Paul R. Chipman, an electron microscopist at Purdue; Alister Craig, a researcher from the Liverpool School of Tropical Medicine in the United Kingdom; Richard J. Kuhn, a professor of biological sciences at Purdue; Wimmer; and Rossmann.

The images are revealing new details about how amino acids, which are the building blocks of proteins, interact during the binding of Coxsackievirus A21 and ICAM-1.

"In general, some amino acids have a positive charge, and some have a negative charge, and these opposite charges can play a critical role in attracting a virus to a host cell," Rossmann said. "It turns out the attraction between negative and positive charges on the virus and on the host cell seem to be a dominating feature but not the entire story of the recognition process.

"There is also shape involved, and the canyon on the virus and features on the ICAM-1 molecule have to match each other, like a key going into a keyhole."

The research has been funded primarily through a grant from the National Institutes of Health.

Xiao said the research is ongoing, and future work may delve into how Coxsackievirus A21 binds to another cell-receptor molecule called DAF, or decay acceleration factor. The virus binds to both ICAM-1 and DAF at the same time, so future work may result in finding the structure of a complex that includes both molecules attached to the virus.
Writer: Emil Venere, (765) 494-4709, ve


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Biologists See Combined Structure Of Cold Virus And Receptor Molecule." ScienceDaily. ScienceDaily, 14 July 2005. <www.sciencedaily.com/releases/2005/07/050712231727.htm>.
Purdue University. (2005, July 14). Biologists See Combined Structure Of Cold Virus And Receptor Molecule. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2005/07/050712231727.htm
Purdue University. "Biologists See Combined Structure Of Cold Virus And Receptor Molecule." ScienceDaily. www.sciencedaily.com/releases/2005/07/050712231727.htm (accessed August 20, 2014).

Share This




More Health & Medicine News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
101-Year-Old Working Man Has All The Advice You Need

101-Year-Old Working Man Has All The Advice You Need

Newsy (Aug. 19, 2014) Herman Goldman has worked at the same lighting store for almost 75 years. Find out his secrets to a happy, productive life. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
American Ebola Patient Apparently Improving, Outbreak Is Not

American Ebola Patient Apparently Improving, Outbreak Is Not

Newsy (Aug. 19, 2014) Nancy Writebol, an American missionary who contracted Ebola, is apparently getting better, according to her husband. The outbreak, however, is not. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins