Featured Research

from universities, journals, and other organizations

Ocean Spray Lubricates Hurricane Winds

Date:
July 26, 2005
Source:
University of California - Berkeley
Summary:
According to mathematicians from UC Berkeley and Russia, turbulence at the boundary between wind and ocean should keep hurricane winds to a gentle breeze. Models of this interface, however, show that large drops of water thrown up by waves suppress the turbulence, allowing winds to build to tremendous speeds. Perhaps, they speculate, a fast decaying surfactant poured on roiling seas could tame a hurricane.

Hurricane Emily, shown battering the Gulf Coast of Texas and Mexico on July 20 in this photo from NASA's Aqua satellite, likely gained force from the reduction in turbulence caused by ocean spray. (NASA photo)

Berkeley -- Hurricane Emily's 140-mile-per-hour winds, which last week blew roofs off hotels and flattened trees throughout the Caribbean, owed their force to an unlikely culprit -- ocean spray.

According to a new study by two University of California, Berkeley, mathematicians and their Russian colleague, the water droplets kicked up by rough seas serve to lubricate the swirling winds of hurricanes and cyclones, letting them build to speeds approaching 200 miles per hour. Without the lubricating effect of the spray, the mathematicians estimate, winds would rise to little more than 25 miles per hour.

"This is not a small effect," said Alexandre Chorin, professor of mathematics at UC Berkeley and faculty researcher at Lawrence Berkeley National Laboratory (LBNL). He and fellow UC Berkeley mathematics professor Grigory I. Barenblatt, also of LBNL, along with V. M. Prostokishin of the Shirshov Institute of Oceanology in Moscow, published their analysis of the effect of ocean spray in the Early Online Edition of the Proceedings of the National Academy of Sciences.

Over the past decade, the three mathematicians have developed a body of equations to describe turbulence in fluids and have applied these equations to many practical problems. Turbulence slows flowing liquids or gases by generating eddies, swirls and vortices, and thus plays a role in keeping airplanes aloft, slowing ships and taming rivers.

"Turbulence is generally a good thing," Chorin said, noting that without turbulence the Mississippi River at its mouth would be flowing at supersonic speed. "You need turbulence to make friction stronger."

The equations, when applied to a cloud of water droplets sandwiched between flowing air and water, indicate that large water droplets thrown up by cresting waves in rough seas inhibit the turbulence in the air over the ocean. Without this turbulence to drain energy from the swirling winds, winds can build to tremendous speeds. Without turbulence, friction between the air and water would be reduced by a factor of 1,000, Chorin said, sometimes allowing winds to rise to speeds eight times greater than would be the case with turbulence.

The turbulent vortices in the air are suppressed by the droplets when they rain back into the sea, somewhat like "combing unruly hair," Chorin said. These droplets are about 20 microns across (8 ten-thousandths of an inch) or larger.

The smaller the droplets, the less ability they have to suppress the turbulence, he said, which suggests one way to calm hurricanes.

"If you could develop a detergent to reduce the size of the droplets, you might be able to stop a hurricane," he said. "That's not as far fetched as it sounds. In ancient times, sailors carried oil to pour out on the water to calm storms. Pouring oil on choppy waters was not a superstition."

In their paper, the mathematicians conclude that "We think that the action of oil was exactly the prevention of the formation of droplets! The turbulence was restored after the oil was dropped, the turbulent drag increased, and the intensity of the squall was reduced. Possibly hurricanes can be similarly prevented or damped by having airplanes deliver fast decaying harmless surfactants to the right places on the sea surface."

The team began working on the problem after a colleague, Sir M. James Lighthill, suggested to Barenblatt at a party that drops in ocean spray might have a lubricating effect on hurricane winds. Hurricanes or, more properly, tropical cyclones, form at low-pressure areas over warm, tropical oceans. Swirling air is accelerated by energy from the warm water.

Lighthill was unable to solve the problem before his untimely swimming death in 1998, but his friends took on the task employing their turbulence models. The paper is dedicated to "the great mathematician and fluid mechanician Sir James Lighthill."

Whereas Lighthill thought that evaporation of the droplets cooled the atmosphere and led to accelerated winds, Chorin, Barenblatt and Prostokishin have showed that more important is the reduction of turbulence by falling droplets. Nevertheless, they note that evaporative cooling also serves to reduce turbulence and thus allow winds to build.

 

###

The work was supported by the U. S. Department of Energy

 


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Berkeley. "Ocean Spray Lubricates Hurricane Winds." ScienceDaily. ScienceDaily, 26 July 2005. <www.sciencedaily.com/releases/2005/07/050726074054.htm>.
University of California - Berkeley. (2005, July 26). Ocean Spray Lubricates Hurricane Winds. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2005/07/050726074054.htm
University of California - Berkeley. "Ocean Spray Lubricates Hurricane Winds." ScienceDaily. www.sciencedaily.com/releases/2005/07/050726074054.htm (accessed April 19, 2014).

Share This



More Earth & Climate News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) — Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) — Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) — An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins