Featured Research

from universities, journals, and other organizations

Understanding Fragile X Syndrome With The Blink Of An Eye

Date:
August 4, 2005
Source:
Cell Press
Summary:
While researchers have long known the genetic defect underlying Fragile X syndrome, they are still tracing how that defect creates the complex mix of mental retardation, hyperactive behavior, attention deficits, and other problems in the disorder. Fragile X is particularly important because it is the most common single-gene cause of mental retardation -- affecting about 1 in 4000 males and 1 in 8000 females in the U.S.

While researchers have long known the genetic defect underlying Fragile X syndrome, they are still tracing how that defect creates the complex mix of mental retardation, hyperactive behavior, attention deficits, and other problems in the disorder. Fragile X is particularly important because it is the most common single-gene cause of mental retardation--affecting about 1 in 4000 males and 1 in 8000 females in the U.S.

In an article in the August 4, 2005, issue of Neuron, researchers led by Chris De Zeeuw of Erasmus University Rotterdam report that they have pinpointed a specific cause of defects in motor learning in Fragile X patients. Their work represents the first investigation of the role of abnormalities in the brain's cerebellum in Fragile X syndrome.

Fragile X syndrome is caused by a defect in the Fragile X mental retardation 1 (Fmr1) gene, which in turns produces a nonfunctioning protein, FMRP. In their studies, De Zeeuw and colleagues studied the behavioral effects on motor learning and the effects on neurons in the cerebellum of knocking out this gene.

They found that mice lacking the gene showed deficits in a particular motor learning task known to be largely controlled by the cerebellum. In this "eyeblink conditioning" task, the mice were taught to associate a stimulus such as a tone with a puff of air on their eye, and the blink response was measured as an indication of how well the animals could learn the task. The researchers found that mice completely lacking the Fmr1 gene showed deficits in the motor learning task. But most importantly, the researchers also found that mice lacking the Fmr1 gene only in specific neurons, called Purkinje cells, in the cerebellum showed the deficit.

Detailed electrophysiological studies of Purkinje cells in such mutant mice revealed that the cells showed an enhanced weakening of their signaling connections--called long-term depression. The researchers also found that the Purkinje cells showed abnormalities in structures called dendrites, which are the branches from nerve cells that contain the receiving stations for signals from other neurons.

When the researchers conducted similar eyeblink conditioning tests in Fragile X patients, they found the same severe deficits.

And when the researchers created a mathematical model of long-term depression, they found that they could link alteration in signaling between neurons in the cerebellum with impairment in motor learning processes.

"Thus, while a lack of FMRP in areas such as the cerebral cortex, amygdala, and hippocampus may induce cognitive symptoms in Fragile X syndrome, the current data allow us to conclude that a lack of functional FMRP in cerebellar P cells may equally well lead to deficits in motor learning in Fragile X patients," concluded the researchers.

###

The researchers include S.K.E. Koekkoek, B.A. Milojkovic, B.R. Dortland, T.J.H. Ruigrok, W. De Graaf, A.E. Smit, F. VanderWerf, C.E. Bakker, R. Willemsen, E. Mientjes, M. Joosten, B.A. Oostra, and C.I. De Zeeuw of Erasmus MC, Rotterdam, The Netherlands; K. Yamaguchi,T. Ikeda, S. Kakizawa, K. Onodera, and M. Ito of RIKEN, Saitama, Japan; R. Maex and E. De Schutter of University of Antwerp, Belgium; and D.L. Nelson of Baylor College of Medicine, Houston, Texas. This work was supported by the Dutch Organization for Medical Sciences, Life Sciences, Neuro-Bsik consortium, and the European Community (EC). B.A.O., S.K.E.K., and D.L.N. were supported by NIH and FRAXA Research Foundation. E.D.S. and R.M were supported by EC and IUAP and FWO (Belgium).

Koekkoek et al.: "Deletion of FMR1 in Purkinje Cells Enhances Parallel Fiber LTD, Enlarges Spines, and Attenuates Cerebellar Eyelid Conditioning in Fragile X Syndrome." Publishing in Neuron, Vol. 47, pages 339--352, August 4, 2005. DOI 10.1016/j.neuron.2005.07.005 www.neuron.org


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Understanding Fragile X Syndrome With The Blink Of An Eye." ScienceDaily. ScienceDaily, 4 August 2005. <www.sciencedaily.com/releases/2005/08/050804125012.htm>.
Cell Press. (2005, August 4). Understanding Fragile X Syndrome With The Blink Of An Eye. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2005/08/050804125012.htm
Cell Press. "Understanding Fragile X Syndrome With The Blink Of An Eye." ScienceDaily. www.sciencedaily.com/releases/2005/08/050804125012.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins