Featured Research

from universities, journals, and other organizations

'Smart' Nanoprobes Light Up Disease: Quantum Dots Programmed To Glow In Presence Of Enzyme Activity

Date:
August 16, 2005
Source:
Rice University
Summary:
Researchers from Rice University's Center for Biological and Environmental Nanotechnology (CBEN) have developed a "smart" beacon hundreds of times smaller than a human cell that is programmed to light up only when activated by specific diseases. Altered expression of particular proteases is a common hallmark of cancer, atherosclerosis and other diseases. The research appears in the September issue of the journal Biochemical and Biophysical Research Communications.

Quantum dots (red color in image above) glowing after targeting to cancer cells.
Credit: Image courtesy of Rice University

HOUSTON, Aug. 1, 2005 -- Researchers from Rice University's Center forBiological and Environmental Nanotechnology (CBEN) have developed a"smart" beacon hundreds of times smaller than a human cell that isprogrammed to light up only when activated by specific proteases.Altered expression of particular proteases is a common hallmark ofcancer, atherosclerosis, and many other diseases.

In the September issue of the journal Biochemical and Biophysical Research Communications,lead authors Jennifer West, the Isabel C. Cameron Professor ofBioengineering and director of CBEN's biological research program, andRebekah Drezek, the Stanley C. Moore Assistant Professor ofBioengineering and assistant professor of electrical and computerengineering, describe development of a new nanoprobe for visualizationof proteolytic activity in vivo.

"The idea is to develop a 'smart' nanostructure that is dark inits original state but lights up very brightly in the presence ofenzymatic activity associated with a particular disease process," saidWest. "Other groups have used targeted nanostructures including quantumdots for molecular imaging, but they have never been able to adequatelysolve the problem of clearly distinguishing between the 'cancer ishere' signal and the background light which arises from nanostructuresnot specifically bound to their molecular targets."

Rice's technology solves this longstanding problem by usingemissive nanoparticles called quantum dots that give off light in thenear-infrared (NIR), a rare portion of the spectrum that has nobackground component in biomedical imaging. Near-infrared light alsopasses harmlessly through skin, muscle and cartilage, so the new probescould alert doctors to tumors and other diseases sites deep in the bodywithout the need for a biopsy or invasive surgery.

The probe's design makes use of a technique called "quenching"that involves tethering a gold nanoparticle to the quantum dot toinhibit luminescence. The tether, a peptide sequence measuring only afew nanometers, or billionths of a meter, holds the gold close enoughto prevent the quantum dot from giving off its light.

In their test system, the Rice team used a peptide tether thatis cleaved by the enzyme collagenase. The researchers first showed thatluminescence of the quantum dots was cut by more than 70 percent whenthey were attached to the gold particles. They remained dark until thenanostructures were exposed to collagenase after which the luminescencesteadily returned.

Ultimately, the researchers hope to pair a series of quantumdots, each with a unique NIR optical signature, to an index of linkerproteases.

"There is currently a critical need for methods tosimultaneously image the activity of multiple proteases in vivo," saidDrezek. "This is important not only for early detection of severaldiseases, but perhaps more significantly, in understanding andmonitoring the efficacy of therapeutic interventions, including thegrowing class of drugs that act as protease inhibitors. What isparticularly powerful about the protease imaging probes described inthis study is the combination of the contrast enhancement achievablethrough an activateable probe with the imaging advantages provided bythe brightness, photostability, and tunability of quantum dots."

###

CBEN research is funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "'Smart' Nanoprobes Light Up Disease: Quantum Dots Programmed To Glow In Presence Of Enzyme Activity." ScienceDaily. ScienceDaily, 16 August 2005. <www.sciencedaily.com/releases/2005/08/050814171326.htm>.
Rice University. (2005, August 16). 'Smart' Nanoprobes Light Up Disease: Quantum Dots Programmed To Glow In Presence Of Enzyme Activity. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2005/08/050814171326.htm
Rice University. "'Smart' Nanoprobes Light Up Disease: Quantum Dots Programmed To Glow In Presence Of Enzyme Activity." ScienceDaily. www.sciencedaily.com/releases/2005/08/050814171326.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins