Featured Research

from universities, journals, and other organizations

Physicists Describe A New Mechanism For Metallic Magnetism

Date:
August 26, 2005
Source:
University of California - Santa Cruz
Summary:
Predicting the magnetic behavior of metallic compounds is a surprisingly difficult problem for theoretical physicists. While the properties of a common refrigerator magnet are not a great mystery, certain materials exhibit magnetic properties that do not fit within existing theories of magnetism. One such material inspired a recent theoretical breakthrough by physicists at the University of California, Santa Cruz. Their description of "kinetic antiferromagnetism" solves a problem that has stumped theoretical physicists for decades.

SANTA CRUZ, CA--Predicting the magnetic behavior of metallic compoundsis a surprisingly difficult problem for theoretical physicists. Whilethe properties of a common refrigerator magnet are not a great mystery,certain materials exhibit magnetic properties that do not fit withinexisting theories of magnetism. One such material inspired a recenttheoretical breakthrough by physicists at the University of California,Santa Cruz.

In a paper scheduled for publication in the August 26 issue of thejournal Physical Review Letters, Sriram Shastry, a professor of physicsat UCSC, and graduate student Jan Haerter describe "kineticantiferromagnetism," a new mechanism for metallic magnetism inmaterials with a particular type of atomic lattice structure. The papersolves a problem that has stumped theoretical physicists for decades.

"New materials tend to drive theoretical advances," Shastrysaid. "Metallic magnetism is a real frontier field in theoreticalphysics, and it has practical applications in materials science."

Superconductors, magnetic storage devices (such as computerhard drives), and other applications are among the areas in whichtheoretical advances in metallic magnetism could play an importantrole.

Shastry and Haerter were interested in the unusual magneticbehavior of sodium cobalt oxide, a material first described in 1997 andintensively studied in recent years. The material can be made withvariable amounts of sodium ions sandwiched between layers of cobaltoxide. The cobalt atoms form a triangular lattice structure that givesrise to "electronic frustration," which refers to the inability of theelectrons in the system to achieve a single state that minimizes theirtotal energy.

A landmark in the theoretical understanding of why certainmetals are ferromagnetic--known as the Nagaoka-Thouless theorem--wasachieved in the mid-1960s, but only applies to materials with anunfrustrated lattice structure. The frustrated case has remainedunsolved for the past 40 years.

"This problem has been a tough nut to crack. We were able tomake some progress and came up with a surprising result," Shastry said.

The magnetic properties of metals result from the configurationof the spins of electrons. Electron spin is a quantum mechanicalproperty that can be either "up" or "down." In a ferromagnetic metalthe electron spins tend to spontaneously align in the same direction.Ferromagnetism accounts for refrigerator magnets and most othermagnetic behavior encountered in daily life.

In antiferromagnetism, the spins align in a regular patternwith neighboring spins pointing in opposite directions, orantiparallel. For electrons living on a triangular lattice, however,this configuration is frustrated, because two of the three electrons ineach triangle must have the same spin.

"In physics, frustration is a good thing because it results ininteresting properties. There are many kinds of frustrated systems innature," Shastry said.

The kinetic antiferromagnetism in a triangular latticedescribed by Haerter and Shastry results from the movement of electronswhen there is a single "electron hole," or unoccupied site for anelectron, in the lattice. They used a theoretical model that enabledthem to study the spin configuration around the electron hole, andfound that the hole is surrounded by an unfrustrated hexagon in whichthe electron spins alternate in an antiferromagnetic pattern.

"The hole can be seen as a moving impurity around which spinstend to line up antiferromagnetically," the authors wrote in the paper.

Physicists use the concept of a moving electron hole tosimplify the analysis of the motions of large numbers of electrons. TheNagaoka-Thouless theorem shows how the motion of a single hole on anunfrustrated lattice leads to ferromagnetism. Haerter and Shastryshowed that the motion of a single hole on a frustrated lattice resultsin weak antiferromagnetism.

"It is surprising because the kinetic motion of electrons usually leads to ferromagnetism," Shastry said.

Sodium cobalt oxide is one of the first known metallic compoundswith a triangular lattice structure. The density of electron holes inthe lattice varies depending on the sodium content, and this hasdramatic effects on the material's magnetic behavior. Haerter andShastry's theory provides new insights into the physics of this unusualsystem.



Story Source:

The above story is based on materials provided by University of California - Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Cruz. "Physicists Describe A New Mechanism For Metallic Magnetism." ScienceDaily. ScienceDaily, 26 August 2005. <www.sciencedaily.com/releases/2005/08/050826075432.htm>.
University of California - Santa Cruz. (2005, August 26). Physicists Describe A New Mechanism For Metallic Magnetism. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2005/08/050826075432.htm
University of California - Santa Cruz. "Physicists Describe A New Mechanism For Metallic Magnetism." ScienceDaily. www.sciencedaily.com/releases/2005/08/050826075432.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins