Featured Research

from universities, journals, and other organizations

Study Reveals Genomics Of Inflammation From Severe Injury

September 6, 2005
NIH/National Institute of General Medical Sciences
Researchers used a microarray approach to identify all the genes that change their activity in response to body-wide inflammation. The surprising results -- that a large percentage of genes are turned down instead of up -- leads scientists closer to a full genomic understanding of the body's response to severe injury and infection. In the future, this knowledge will help physicians better predict outcomes and tailor treatments for patients in critical condition.

When it comes to inflammation, too much of a good thing can be deadly.In some severely injured patients, this normal healing process candevelop into a lethal, whole-body response, including bloodstreaminfection (sepsis) and multiple organ failure. How and why inflammationturns from healing to harming is still mysterious, so doctors can'taccurately predict how each injured patient will fare.

Related Articles

To address these issues, scientists have produced the genomicequivalent of a time-lapse movie, tracking the activity of thousands ofgenes through the course of body-wide inflammation. The researchappears in the August 31 advanced online issue of Nature.

"This work represents a major step in understandinginflammation in severely injured or burned patients. We hope thisknowledge eventually will help physicians better predict patientoutcomes and tailor treatments accordingly," said Jeremy M. Berg,Ph.D., director of the National Institute of General Medical Sciences(NIGMS), the component of the National Institutes of Health that fundedthe research.

The study is the result of a collaborative effort funded by anNIGMS "glue grant." Glue grants bring together scientists from diversefields--in this case surgery, critical care medicine, genomics,bioinformatics, immunology and computational biology--to solve major,complex problems in biomedical science that no single laboratory couldaddress on its own.

To identify all the genes involved in responding to criticalinjury, the Inflammation and the Host Response to Injury glue grantteam injected healthy volunteers with bacterial endotoxin. Thismolecule causes body-wide inflammation similar to sepsis, with oneimportant difference--it is well-defined and lasts only 24 hours. Bycomparing the changes in gene activity caused by endotoxin exposurewith those caused by trauma, the researchers hope to identify themolecular markers that spell sepsis.

The research team zeroed in on white blood cells, which helpfight infection and disease and trigger inflammation. The scientistsanalyzed the activity of tens of thousands of genes from these cells,which were taken from the volunteers at regular intervals over 24hours. Because this research plots the course of the inflammatoryresponse over time, it is particularly valuable, according to Scott D.Somers, Ph.D., NIGMS program director of this glue grant. "In the caseof injury, time is critical. To provide the best treatment, doctorsneed to know how the human body responds in the moments and days afteran injury," he said. "No other study of injury or inflammation hastracked changes to the entire human genome over time."

The research team found that, of the 5,000 or so genes thatfluctuated in response to endotoxin, more than half were turned down,causing the blood cells to be less metabolically active. This seemssurprising, as one would expect genes required for healing to be turnedup and for white blood cells to be more, not less, active. Althoughother research groups have seen similar genetic results in animals,scientists don't yet have an explanation for this counterintuitiveresponse.

Understanding inflammation requires knowing not just whichgenes are involved, but how those genes interact with each other. Toinvestigate this, the group turned to a knowledge base compiled byIngenuity Systems, Inc. of Mountain View, Calif., that includes 200,000published reports on more than 8,000 human, rat and mouse genes andtheir genetic interactions. This tool enabled the group to uncoverabout 300 genes and several genetic pathways not previously known to beinvolved in inflammation.

The Nature article is the second in a planned series of papersthat aim to improve understanding of the human response to injury. Inits first paper, published in March in the Proceedings of the NationalAcademy of Sciences, the research team described the development of amicroarray technique to analyze the entire genome of white blood cellsfrom healthy volunteers and critically injured patients. Next, the teamplans to study gene and protein activity in the white blood cells of alarge group of trauma and burn patients over longer periods of time.

The glue grant team includes scientists from Stanford GenomeTechnology Center in Palo Alto, Calif.; University of Medicine andDentistry of New Jersey-Robert Wood Johnson Medical School in NewBrunswick, N.J.; Ingenuity Systems, Inc. in Mountain View, Calif.;University of Florida College of Medicine in Gainesville; WashingtonUniversity in St. Louis, Mo.; University of Rochester School ofMedicine in Rochester, N.Y.; and Massachusetts General Hospital,Harvard Medical School in Boston.

Story Source:

The above story is based on materials provided by NIH/National Institute of General Medical Sciences. Note: Materials may be edited for content and length.

Cite This Page:

NIH/National Institute of General Medical Sciences. "Study Reveals Genomics Of Inflammation From Severe Injury." ScienceDaily. ScienceDaily, 6 September 2005. <www.sciencedaily.com/releases/2005/09/050906075753.htm>.
NIH/National Institute of General Medical Sciences. (2005, September 6). Study Reveals Genomics Of Inflammation From Severe Injury. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2005/09/050906075753.htm
NIH/National Institute of General Medical Sciences. "Study Reveals Genomics Of Inflammation From Severe Injury." ScienceDaily. www.sciencedaily.com/releases/2005/09/050906075753.htm (accessed April 19, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Dr. Oz Under Fire For 'Quack Treatments' Yet Again

Dr. Oz Under Fire For 'Quack Treatments' Yet Again

Newsy (Apr. 17, 2015) Ten doctors signed a letter urging Columbia University to drop Dr. Oz as vice chair of its department of surgery, saying he plugs "quack" treatments. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins