Featured Research

from universities, journals, and other organizations

Method Slashes Quantum Dot Costs By 80 Percent

Date:
September 9, 2005
Source:
Rice University
Summary:
In an important advance toward the large-scale manufacture of fluorescent quantum dots, scientists at Rice University have developed a new method of replacing the pricey solvents used in quantum dot synthesis with cheaper oils that are commonplace at industrial chemical plants. Rice's study, which was conducted under the auspices of the Center for Biological and Environmental Nanotechnology (CBEN), is published online and slated to appear in the October issue of the journal Nanotechnology.

In an important advance toward the large-scale manufacture of fluorescent quantum dots, scientists at Rice University have developed a new method of replacing the pricey solvents used in quantum dot synthesis with cheaper oils that are commonplace at industrial chemical plants.

Rice's study, which was conducted under the auspices of the Center for Biological and Environmental Nanotechnology (CBEN), is published online and slated to appear in the October issue of the journal Nanotechnology.

"CBEN started to undertake some exploratory work more than a year ago on the scale-up issues of quantum dot manufacture, but the solvents turned out to be so expensive that we just couldn't afford to run more than a few large-reactor experiments," said the study's lead author, Michael Wong, assistant professor of chemical and biomolecular engineering and of chemistry. "That was a great reality check, and it made us look at the problem of solvent cost sooner rather than later."

Quantum dots typically cost more than $2,000 per gram from commercial sources, and pricey solvents like octadecene, or ODE - the least expensive solvent used in quantum dot preparation today - account for about 90 percent costs of raw materials.

Heat-transfer fluids - stable, heat-resistant oils that are used to move heat between processing units at chemical plants - can cost up to seven times less than ODE. Replacing ODE with the heat-transfer fluid Dowtherm A, for example, reduces the overall materials cost of making quantum dots by about 80 percent.

Quantum dots are tiny crystals of semiconducting materials - cadmium selenide or CdSe is the most popular flavor - that measure just a few nanometers in diameter. Most of the commercial possibilities discussed for quantum dots - bioimaging, color displays, lasers, etc. - relate to their size-controlled fluorescence. For example, CdSe quantum dots have the ability to absorb high-energy photons of ultraviolet light and re-emit them as photons of visible light. They glow different colors, depending on the size, shifting from the red to the blue end of the spectrum as the crystals get smaller.

The reproducible synthesis of high-quality quantum dots became a reality in the early 1990s when researchers at MIT pioneered a new method of producing quantum dots with uniform sizes and well-defined optical signatures. The basic recipe for making quantum dots hasn't changed much since it was first developed. A solvent is heated to almost 500 degrees Fahrenheit, and solutions containing cadmium and selenium compounds are injected. They chemically decompose and recombine as pure CdSe nanoparticles. Once these nanocrystals form, scientists can adjust their optical properties by growing them to precisely the size they want by adjusting the cooking time.

The solvent originally used for this process was trioctylphosphine oxide, or TOPO, which costs more than $150 per liter. Later, other scientists introduced a new recipe by replacing TOPO with a mixture of ODE and oleic acid.

Wong said the CBEN research team, which included CBEN Director Vicki Colvin, professor of chemistry, and Nikos Mantzaris, assistant professor of chemical and biomolecular engineering and of bioengineering, had some initial doubts about whether heat-transfer fluids could be substituted for ODE.

"They were cheap and they didn't break down at high temperatures, but no one uses these compounds for chemical reactions," said Wong. In addition to finding that other quantum dot nanostructures could be made in heat- transfer fluids, the team concluded that any solvent could be used to replace ODE. Thanks to a mathematical modeling approach developed by Mantzaris, the team now has a method for predicting the particle size and growth behavior of quantum dots based on only three physical properties of a given solvent: viscosity, surface free energy and solubility of bulk cadmium selenide powder.

###

The research was funded by the National Science Foundation.

Other co-authors include graduate students Sabashini Asokan, Karl Krueger and Zuze Mu; postdoctoral research associate Ammar Alkhawaldeh; and undergraduate researcher Alessandra Carreon.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Method Slashes Quantum Dot Costs By 80 Percent." ScienceDaily. ScienceDaily, 9 September 2005. <www.sciencedaily.com/releases/2005/09/050909073701.htm>.
Rice University. (2005, September 9). Method Slashes Quantum Dot Costs By 80 Percent. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2005/09/050909073701.htm
Rice University. "Method Slashes Quantum Dot Costs By 80 Percent." ScienceDaily. www.sciencedaily.com/releases/2005/09/050909073701.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins