Featured Research

from universities, journals, and other organizations

New Microfluidic Devices Found To Be Effective Method Of In-vitro Fertilization In Mice

Date:
October 18, 2005
Source:
University of Michigan Health System
Summary:
Technology that more closely mirrors the natural fertilization process is showing promise as a new method of in-vitro fertilization, researchers at the University of Michigan Health System have found. The researchers found that microfluidics – an emerging area of physics and biotechnology that deals with the microscopic flow of fluids – can be used successfully for IVF in mice.

Technology that more closely mirrors the natural fertilization process is showing promise as a new method of in-vitro fertilization, researchers at the University of Michigan Health System have found. The researchers found that microfluidics – an emerging area of physics and biotechnology that deals with the microscopic flow of fluids – can be used successfully for IVF in mice.
Credit: Image courtesy of University of Michigan Health System

The researchers found that microfluidics – an emerging area of physics and biotechnology that deals with the microscopic flow of fluids – can be used successfully for IVF in mice. They also found that lower total numbers and concentrations of sperm were required when using microfluidic channels instead of culture dishes.

"This is an extension of the work we've done in recent years to use microfluidics to separate viable sperm from dead and immature sperm in order to maximize the potential chances of fertilizing an egg," says Gary D. Smith, Ph.D., associate professor of obstetrics and gynecology, urology, and physiology at the U-M Medical School.

"Now that we are using microfluidics for fertilization, what you are starting to see is the whole IVF process happening on a chip," says Smith, senior author of a study in Human Reproduction and director of the Assisted Reproductive Technologies Laboratory and of the Gamete Cryopreservation Laboratory at the Comprehensive Cancer Center.

IVF is a process in which eggs are removed from a woman's body and fertilized with sperm outside the body. Fertilized eggs are then placed in the woman's uterus, where they can develop as in a normal pregnancy.

The study, published online in the journal Human Reproduction, suggests that among other uses, microfluidic channels could be used in some – but not all – instances when a common form of insemination, known as ICSI, otherwise would be employed. ICSI, which stands for intracytoplasmic sperm injection, involves a single sperm being injected directly into an egg, or oocyte.

Smith says ICSI still will be used in many situations, particularly when other types of fertilization have failed in the past, or when the man has an extremely low sperm count or motility. Smith does not think the use of microfluidics will replace ICSI, but he says it could offer another option to many couples whose situations do not require ICSI, a process that can cost an extra $1,500 to $2,500 in addition to standard IVF costs.

"While ICSI bypasses all natural selection, the use of microfluidic channels more closely resembles in vivo insemination. The microfluidic environment also may possess conditions more suitable for efficient sperm-oocyte interaction than the culture dish," he says.

During the early stages of the study, researchers found that, contrary to their initial hypothesis, a much lower fertilization rate was achieved with the microfluidic device (12 percent) than in culture dishes (43 percent). They then hypothesized that as sperm concentration is decreased, fertilization rates would improve in microchannels. At these lower concentrations, the combined fertilization rate was significantly higher in microchannels (27 percent) than in culture dishes (10 percent).

The authors note that the research has only been conducted on mice, and that more testing and possibly the development of auxiliary technology will be needed before IVF by microfluidics is a viable option for humans.

Still, the research is very promising, says lead author Ronald S. Suh, M.D., now with Urology of Indiana LLC in Indianapolis who was a resident in the U-M Department of Urology when he wrote the paper.

"There has been a large amount of research on almost every aspect of IVF. The exciting thing we're seeing here is going the potential of integration of all of these things. In the future, you will be able to take patients with low sperm counts, use microfluidics to select the best sperm, and achieve fertilization in one step," he says. "That integration is really what is going to make microfluidics change IVF."

In addition to Smith and Suh, other authors of the paper are Dana A. Ohl, M.D., professor of urology at the U-M Medical School; Shuichi Takayama, Ph.D., assistant professor of biomedical engineering and of macromolecular science and engineering at the U-M College of Engineering; Xiaoyue Zhu, research fellow in biomedical engineering; and Nandita Phadke, research assistant in biomedical engineering.

Portions of the research were supported by grants from the National Institutes of Health and the College of Engineering Technology Development Fund.

U-M has applied for patents on the microfluidic technology involved in this study. Smith and Takayama have formed a company called Incept BioSystems and stand to profit from commercialization of the products.

###

Citation: Human Reproduction, published online, humrep.oxfordjournals.org/, DOI: 10.1093/humrep/dei323.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan Health System. "New Microfluidic Devices Found To Be Effective Method Of In-vitro Fertilization In Mice." ScienceDaily. ScienceDaily, 18 October 2005. <www.sciencedaily.com/releases/2005/10/051016084029.htm>.
University of Michigan Health System. (2005, October 18). New Microfluidic Devices Found To Be Effective Method Of In-vitro Fertilization In Mice. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2005/10/051016084029.htm
University of Michigan Health System. "New Microfluidic Devices Found To Be Effective Method Of In-vitro Fertilization In Mice." ScienceDaily. www.sciencedaily.com/releases/2005/10/051016084029.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins