Featured Research

from universities, journals, and other organizations

Brownian Motion Under The Microscope

Date:
October 16, 2005
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
An international group of researchers from the EPFL (Ecole Polytechnique Fédérale de Lausanne), the University of Texas at Austin and the European Molecular Biology Laboratory in Heidelberg, Germany have demonstrated that Brownian motion of a single particle behaves differently than Einstein postulated one century ago. Their experiment tracked the Brownian fluctuations of a single particle at microsecond time scales and nanometer length scales, marking the first time that single micron-sized particles suspended in fluid have been measured with such high precision.

The researchers' experiment tracked the Brownian fluctuations of a single particle at microsecond time scales and nanometer length scales, marking the first time that single micron-sized particles suspended in fluid have been measured with such high precision.
Credit: Image courtesy of Ecole Polytechnique Fédérale de Lausanne

Lausanne, Switzerland -- An international group ofresearchers from the EPFL (Ecole Polytechnique Fédérale de Lausanne),the University of Texas at Austin and the European Molecular BiologyLaboratory in Heidelberg, Germany have demonstrated that Brownianmotion of a single particle behaves differently than Einsteinpostulated one century ago.

Related Articles


Their results, to be published onlineOctober 11 in Physical Review Letters, provide direct physical evidencethat validates a corrected form of the standard theory describingBrownian motion. Their experiment tracked the Brownian fluctuations ofa single particle at microsecond time scales and nanometer lengthscales, marking the first time that single micron-sized particlessuspended in fluid have been measured with such high precision.

Ahundred years ago, Einstein first quantified Brownian motion, showingthat the irregular movement of particles suspended in a fluid wascaused by the random thermal agitation of the molecules in thesurrounding fluid.

Scientists have subsequently discovered thatmany fundamental processes in living cells are driven by Brownianmotion. And because Brownian particles move randomly throughout theirsurroundings, they have great potential for use as probes at thenanoscale. Researchers can get detailed information about a particle'senvironment by analyzing its Brownian trajectory.

"It is hard tooveremphasize the importance of thoroughly understanding Brownianmotion as we continue to delve ever deeper into the world of theinfinitesimally small, " comments EPFL's lead researcher Sylvia Jeney.

Researchershave known for some time that when a particle is much larger than thesurrounding fluid molecules, it will not experience the completelyrandom motion that Einstein predicted. As the particle gains momentumfrom colliding with surrounding particles, it will displace fluid inits immediate vicinity. This will alter the flow field, which will thenact back on the particle due to fluid inertia. At this time scale theparticle's own inertia will also come into play. But no directexperimental evidence at the single particle level was available tosupport and quantify these effects.

Using a technique calledPhotonic Force Microscopy, the research team has been able to providethis evidence. They constructed an optical trap for a singlemicron-sized particle and recorded its Brownian fluctuations at themicrosecond time scale. "The new microscope allows us to measure theparticle's position with extreme precision," notes University of Texasprofessor Ernst-Ludwig Florin, a member of the research group.

Atthis high resolution, they found that the time it takes for theparticle to make the transition from ballistic motion to diffusivemotion was longer than the classical theory predicted.

"This workratchets our understanding of the phenomenon up a step, providingessential physical evidence for dynamical effects occurring at shorttime scales," says Jeney.

Their results validate the correctedform of the equation describing Brownian motion, and underline the factthat deviations from the standard theory become increasingly importantat very small time scales.

As researchers develop sophisticated,high resolution experimentation techniques for probing the nanoworld,these dynamical details of Brownian motion will be increasinglyimportant.

Dr. Jeney was awarded the SSOM prize at the August2005 meeting of the Swiss Society for Optics and Microscopy for herwork in photonic force microscopy, the technique used in this research.

###

Thiswork was funded by the National Center for Competence in NanoscaleScience Research of the Swiss National Science Foundation.

On the web: https://nanotubes.epfl.ch/index.php?m1=research&m2=topic3b


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Brownian Motion Under The Microscope." ScienceDaily. ScienceDaily, 16 October 2005. <www.sciencedaily.com/releases/2005/10/051016091931.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2005, October 16). Brownian Motion Under The Microscope. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2005/10/051016091931.htm
Ecole Polytechnique Fédérale de Lausanne. "Brownian Motion Under The Microscope." ScienceDaily. www.sciencedaily.com/releases/2005/10/051016091931.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) — US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins