Featured Research

from universities, journals, and other organizations

Additives May Save Energy For Cooling Big Buildings

Date:
November 17, 2005
Source:
National Institute of Standards and Technology
Summary:
A National Institute of Standards and Technology (NIST) researcher has come up with a method designed to improve the energy efficiency of water chillers that cool the nation's large commercial buildings. The NIST method, if confirmed through experiments with full-scale chiller systems, could save as much as 1 percent of the 320 billion kWh of electricity used annually by chillers or an equivalent 920,000 barrels of oil a day, according to Mark Kedzierski, the NIST mechanical engineer who developed the technique.

NIST laboratory experiments have demonstrated that adding small amount of additives to refrigerants may significantly improve the efficiency of commercial air conditioning.
Credit: Photo by Gail Porter/NIST

A National Institute of Standards and Technology (NIST) researcher has come up with a method designed to improve the energy efficiency of water chillers that cool the nation's large commercial buildings. The NIST method, if confirmed through experiments with full-scale chiller systems, could save as much as 1 percent of the 320 billion kWh of electricity used annually by chillers or an equivalent 920,000 barrels of oil a day, according to Mark Kedzierski, the NIST mechanical engineer who developed the technique.

The advance builds on past NIST research designed to optimize mixtures of chiller refrigerants with lubricants. The researchers discovered that some lubricants, when injected in small amounts, can significantly enhance evaporator heat transfer, increasing the efficiency of chillers. When they studied the process more closely they found the most efficient heat transfer occurred when the added oil's surface tension, viscosity, composition and chemical characteristics complemented those of the chiller's base lubricant.

In a recent paper* describing the method, Kedzierski describes how the right additive forms a very thin covering on an evaporator surface, which produces enhanced bubbling during boiling. The improved conversion of the refrigerant molecules into vapor molecules increases the chiller's cooling capacity similar to a heat pump.

Kedzierski developed rules for the selection of the different types of oil additives according to the type of chiller lubricant, making successful energy enhancement less of a hit-or-miss proposition. Laboratory work is under way testing the energy enhancing potential of several oil and lubricant combinations that have been identified by the rules.

"The leap from a successful laboratory experiment to an everyday large-scale cooling application is a big one. NIST wants to see this theory translated into products germane to manufacturers as soon as possible," Kedzierski said. "We welcome private-sector interest in the theory and its application."

*M. Kedzierski. Method and transport properties for enhancing the nucleative heat transfer of refrigerant chiller evaporators. PriorArt Database, ip.com. Online publication date, Sept. 28, 2005. The NIST theory and research is also described at http://www.bfrl.nist.gov/pdf/NISTIR7132.pdf.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Additives May Save Energy For Cooling Big Buildings." ScienceDaily. ScienceDaily, 17 November 2005. <www.sciencedaily.com/releases/2005/11/051117172526.htm>.
National Institute of Standards and Technology. (2005, November 17). Additives May Save Energy For Cooling Big Buildings. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2005/11/051117172526.htm
National Institute of Standards and Technology. "Additives May Save Energy For Cooling Big Buildings." ScienceDaily. www.sciencedaily.com/releases/2005/11/051117172526.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins