Featured Research

from universities, journals, and other organizations

New Insights Into Protein Synthesis And Hepatitis C Infections

Date:
December 4, 2005
Source:
Lawrence Berkeley National Laboratory
Summary:
Scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have uncovered key new information towards understanding the crucial first step in protein synthesis, the process by which the genetic code, harbored within DNA and copied into RNA, is translated into the production of proteins. This new information also helps to explain how viruses, such as Hepatitis C, are able to highjack protein synthesis machinery in humans for their own purposes.

At a resolution of 30 angstroms, this 3-D model of the eIF3 protein complex shows it to be a particle consisting of five lobes - analogous to a head, and a pair of arms and legs.
Credit: Image courtesy of Lawrence Berkeley National Laboratory

Scientists have uncovered key new information towards understanding the crucial first step in protein synthesis, the process by which the genetic code, harbored within DNA and copied into RNA, is translated into the production of proteins. This new information also helps to explain how viruses, such as Hepatitis C, are able to highjack protein synthesis machinery in humans for their own purposes.

Biochemist Jennifer Doudna and biophysicist Eva Nogales, both of whom hold joint appointments with the Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California at Berkeley, and the Howard Hughes Medical Institute (HHMI), led a study in which cryo electron microscopy (cryo-EM) was used to create a 3-D model of the protein complex called eukaryotic translation initiation factor 3 (eIF3). The model showed that the eIF3 protein complex employs the same structural mechanics in the loading of either human or viral RNA to ribosomes, the complex machinery in living cells responsible for protein synthesis.

“This is the first insight into how the initiation mechanisms of protein synthesis work specifically for humans, and a step towards understanding at the molecular level what happens when a viral infection occurs,” said Doudna, a member of Berkeley Lab’s Physical Biosciences Division. “A better understanding of these mechanisms could open the door to new and improved therapies for viral infections.”

Said Nogales, also a member of Berkeley Lab’s Physical Biosciences Division, “Using cryo-EM, we can reconstruct images of the entire protein ensemble to study the molecular machinery behind the protein synthesis process. We now have the tools to see how the many different parts of the molecular machinery come together.”

The results of this study are in the December 2, 2005 issue of the journal Science, in a paper entitled
Structural Roles for Human Translation Factor eIF3 in Initiation of Protein Synthesis. Co-authoring the paper with Doudna and Nogales were Bunpote Siridechadilok and Christopher Fraser of UC Berkeley, and Richard Hall of Berkeley Lab.

Proteins, the curiously-shaped macromolecules that serve as the basic construction material of all living cells, and also initiate and control nearly all cell chemistry, are assembled out of amino acids according to the instructions contained within the genes. These genetic instructions are carried from the DNA inside a cell’s nucleus out into the cell’s cytoplasm via messenger RNA (mRNA). There the information will be translated to a sequence of amino acids via the ribosome, an ancient organelle so highly conserved by evolution that its core components are pretty much the same for all forms of life.

Protein synthesis in mammalian cells begins with the loading of mRNA onto the small ribosome subunit, 40S, which is, in part, one of the responsibilities of the eIF3 complex. The eIF3 complex also interacts with other translation elements that bind at the start of the mRNA, prevents premature joining of the 40S and 60S ribosomal subunits, and helps assemble active ribosomes. Until now, the structural basis for eIF3’s multiple activities has been unknown.

At a resolution of 30 angstroms, the cryo-EM reconstructions of Doudna and Nogales and their collaborators show eIF3 to be a particle consisting of five lobes - analogous to a head, and a pair of arms and legs. The study shows that the left arm of the eIF3 complex binds to the eukaryotic protein complex that recognizes the methylated guanosine cap at the 5’-end of the eukaryotic mRNAs (mRNA consists of a coding region sandwiched between a 5’-end and a 3’-end). By drawing the mRNA’s 5’-end cap through the ribosome entry site and towards the exit, eIF3 ensures the mRNA is properly positioned for its genetic code to be translated.

Acting like a molecular wrestler, eIF3 will also wrap its arms and legs around a structural element of RNA for the hepatitis C virus (HVC), known as the internal ribosome entry site (IRES), and pin it to the exit site of the 40S ribosome subunit. The IRES leaves through the left arm of the eIF3 complex at the same location where interaction with the human mRNA cap-binding complex takes place.

“This might explain the amazing ability of the HVC IRES to hijack the human ribosome and its associated translation factors,” said Doudna.

Said Nogales, “The position of eIF3 in our models also provides a plausible explanation for its role in preventing premature joining of the 40S and 60S ribosome subunits.”

Doudna and members of her research group are now working to improve the resolution of these models from 30 angstroms to about 10 angstroms. This would allow them to see secondary protein structures which would give them a better understanding of the chemistry behind eIF3’s structural mechanics.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.


Story Source:

The above story is based on materials provided by Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Berkeley National Laboratory. "New Insights Into Protein Synthesis And Hepatitis C Infections." ScienceDaily. ScienceDaily, 4 December 2005. <www.sciencedaily.com/releases/2005/12/051203122213.htm>.
Lawrence Berkeley National Laboratory. (2005, December 4). New Insights Into Protein Synthesis And Hepatitis C Infections. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2005/12/051203122213.htm
Lawrence Berkeley National Laboratory. "New Insights Into Protein Synthesis And Hepatitis C Infections." ScienceDaily. www.sciencedaily.com/releases/2005/12/051203122213.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins