Featured Research

from universities, journals, and other organizations

New Microchip Technology For Medical Imaging Biomarkers Of Disease Developed

Date:
December 19, 2005
Source:
University Of California, Los Angeles
Summary:
A collaboration among scientists at UCLA, the California Institute of Technology, Stanford, Siemens and Fluidigm has developed a new technology using integrated microfluidic chips for simplifying, lowering the cost and diversifying the types of molecules used to image the biology of disease with the medical imaging technology, positron emission tomography (PET). These molecules are used with PET to search diagnostically throughout the body to look for, or image, the molecular errors of disease and to guide the development of new molecular therapeutics.

Microchip for production of fluorodeoxyglucose.
Credit: UCLA

A collaboration among scientists at UCLA, the California Institute of Technology, Stanford, Siemens and Fluidigm has developed a new technology using integrated microfluidic chips for simplifying, lowering the cost and diversifying the types of molecules used to image the biology of disease with the medical imaging technology, positron emission tomography (PET). These molecules are used with PET to search diagnostically throughout the body to look for, or image, the molecular errors of disease and to guide the development of new molecular therapeutics.

PET is a new generation of medical imaging for examining the biology of disease that has been shown to improve dramatically the detection of cancer, stage the extent of cancer throughout the body, detect recurrence of cancer and help select the right therapy for individual patients.

In Alzheimer's disease, PET has been shown to be 93 percent accurate in detecting the disease about three years before the conventional diagnosis of "probable Alzheimer's" when integrated into the clinical workup of patients.

In addition, PET has been shown to detect Alzheimer's and other neurological disease years before even symptoms are expressed. PET also is employed to determine which patients with cardiovascular disease will benefit from bypass surgery and angioplasty.

These and other clinical uses of PET employ a labeled version of the sugar glucose, called fluorodeoxyglucose (FDG). Glucose is a critical fuel for cells throughout the body to perform their normal functions. For example, 95 percent of the energy for the brain to function comes from glucose. In addition, cancer cells increase their metabolism of glucose about 25-fold. There were about 3 million clinical PET studies performed in clinical services throughout the world in 2005.

The research was published this week in the journal Science.

Researchers demonstrated a new technology of a programmable chip that can dramatically accelerate the development of many new molecular imaging molecules for PET. As a proof of principle, this group of academic and commercial scientists demonstrated that FDG could be synthesized on a "stamp-size" chip. These chips have a design similar to integrated electronic circuits, except they are made up of fluid channels, chambers, and values, or switches, that can carry out many chemical operations to synthesize and label molecules for PET imaging. All the operations of the chip are controlled and executed by a PC.

FDG was produced on the chip and used to image glucose metabolism in a mouse with a specially designed PET scanner for mice produced by Siemens, called a microPET. The Science paper illustrates that this technology also can produce the amount of FDG required for human studies.

More importantly, the paper illustrates a new base technology for producing and delivering a diverse array of molecular imaging molecules and labeled drugs for use with PET to examine the biology of many diseases for molecular diagnostics and to guide the development of new molecular therapeutics, or drugs.

"Chemists synthesize molecules in a lab by mixing chemicals in beakers and repeating experiments many times, but one day soon they'll sit at a PC and carry out chemical synthesis with the digital control, speed and flexibility of today's world of electronics using a tiny integrated microfluidic chip," said Hsian-Rong Tseng, assistant professor of molecular and medical pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA.

There is a vast distribution of manufacturing sites throughout the world producing PET molecular imaging molecules for hospitals, universities and pharmaceutical companies. The goal is to integrate these new chips into a small control device operated by a PC that will be commercially produced, then to ship chips to users so they can produce whatever molecules they choose for molecular imaging with PET. These chips will be an enabling technology to fuel growth in the number and diversity of imaging molecules and applications of PET in biology and pharmaceutical research and in the care of patients.

The research is supported by a Department of Energy grant to the UCLA Institute for Molecular Medicine, the National Cancer Institute, the Norton Simon Research Foundation, a UCLA National Cancer Institute Molecular Imaging Training grant and commercial support from Siemens and Fluidigm.

The authors and participating institutions and companies include: Hsian-Rong Tseng, Guodong Sui, Chengyi Jenny Shu, Alek N. Dooley, Owen N. Witte, Nagichettiar Satyamurthy, David Stout and Michael Phelps at the David Geffen School of Medicine at UCLA; James R. Heath (also with UCLA), Chung-Cheng Lee, Young-Shik Shin and Arkadij Elizarov at Caltech; Stephen Quake at Stanford; Hartmuth Kolb (also with the David Geffen School of Medicine at UCLA) at Siemens Biomarker Solutions; and Jiang Huang, Antoine Davidon and Paul Wyatt at Fluidigm.


Story Source:

The above story is based on materials provided by University Of California, Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Los Angeles. "New Microchip Technology For Medical Imaging Biomarkers Of Disease Developed." ScienceDaily. ScienceDaily, 19 December 2005. <www.sciencedaily.com/releases/2005/12/051216192412.htm>.
University Of California, Los Angeles. (2005, December 19). New Microchip Technology For Medical Imaging Biomarkers Of Disease Developed. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2005/12/051216192412.htm
University Of California, Los Angeles. "New Microchip Technology For Medical Imaging Biomarkers Of Disease Developed." ScienceDaily. www.sciencedaily.com/releases/2005/12/051216192412.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins