Featured Research

from universities, journals, and other organizations

Predicting The Weather On Titan?

Date:
January 23, 2006
Source:
European Space Agency
Summary:
Using recent Cassini, Huygens and Earth-based observations, scientists have been able to create a computer model which explains the formation of several types of ethane and methane clouds on Titan.

These false-colour images of Titan were obtained by the Cassini-Huygens Visual Infrared Mapping Spectrometer during the 26 October/13 December Titan fly-bys, from distances of between 200 000 and 225 000 kilometres.
Credit: s: NASA/JPL/University of Arizona

Using recent Cassini, Huygens and Earth-based observations, scientists have been able to create a computer model which explains the formation of several types of ethane and methane clouds on Titan.

Clouds have been observed recently on Titan, Saturn’s largest moon, through the thick haze, using near-infrared spectroscopy and images of the south pole and temperate regions near 40 South. Recent observations from Earth-based telescopes and the NASA/ESA/ASI Cassini spacecraft are now providing an insight into cloud climatology.

A European team, led by Pascal Rannou of the Service d’Aeronomie, IPSL Universite de Versailles-St-Quentin, France, has developed a general circulation model which couples dynamics, haze and cloud physics to study Titan climate and enables us to understand how the major cloud features which are observed, are produced.

This climate model also allows scientists to predict the cloud distribution for the complete Titan year (30 terrestrial years), and especially in the next years of Cassini observations.

The Voyager missions of the early 1980s gave the first indications of condensate clouds on Titan. Because of the cold temperatures in the moon’s atmosphere (tropopause), it was assumed that most of the organic chemicals formed in the upper atmosphere by photochemistry would condense into clouds while sinking. Methane would also condense at high altitudes, it was believed, having been transported from the surface.

Since then, several one-dimensional models of Titan’s atmosphere including sophisticated microphysics models were created to predict the formation of drops of ethane and methane. Similarly, the methane cycle had been studied separately in a circulation model, but without cloud microphysics.

These studies generally found that methane clouds could be triggered when air parcels cooled while moving upward or from equator to pole. However, these models hardly captured the fine details of the methane and ethane cloud cycles.

What Rannou’s team has done is to combine a cloud microphysical model into a general circulation model. The team can now identify and explain the formation of several types of ethane and methane clouds, including the south polar and sporadic clouds in the temperate regions, especially at 40 S in the summer hemisphere.

The scientists found that the predicted physical properties of the clouds in their model matched well with recent observations. Methane clouds that have been observed to date appear in locations where ascending air motions are predicted in their model.

The observed south polar cloud appears at the top of a particular ‘Hadley cell’, or mass of vertically circulating air, exactly where predicted at the south pole at an altitude of around 20-30 kilometres.

The recurrent large zonal (longitudinal direction) clouds at 40 S and the linear and discrete clouds that appear in the lower latitudes are also correlated with the ascending part of similar circulation cell in the troposphere, whereas smaller clouds at low latitudes, similar to the linear and discrete clouds already observed by Cassini are rather produced by mixing processes.

"Clouds in our circulation model are necessarily simplified relative to the real clouds, however the main cloud features predicted find a counterpart in reality.

"Consistently, our model produces clouds at places where clouds are actually observed, but it also predicts clouds that have not, or not yet, been observed," said Pascal Rannou.

Titan’s cloud pattern appears to be similar to that of the main cloud patterns on Earth and Mars. The puzzling clouds at 40 S are produced by the ascending branch of a Hadley cell, exactly like tropical clouds are in the Intertropical Convergence Zone (ITCZ), as on Earth and Mars.

Polar clouds - produced by 'polar cells' - are similar to those produced at mid-latitudes on Earth. On other hand, clouds only appears at some longitudes. This is a specific feature of Titan clouds, and may be due to a Saturn tidal effect. The dynamical origin of cloud distribution on Titan is easy to test.

Cloudiness prediction for the coming years will be compared to observations made by Cassini and ground-based telescopes. Specific events will definitely prove the role of the circulation on the cloud distribution.


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Predicting The Weather On Titan?." ScienceDaily. ScienceDaily, 23 January 2006. <www.sciencedaily.com/releases/2006/01/060123164538.htm>.
European Space Agency. (2006, January 23). Predicting The Weather On Titan?. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2006/01/060123164538.htm
European Space Agency. "Predicting The Weather On Titan?." ScienceDaily. www.sciencedaily.com/releases/2006/01/060123164538.htm (accessed September 22, 2014).

Share This



More Space & Time News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's MAVEN Spacecraft Has Finally Reached Mars

NASA's MAVEN Spacecraft Has Finally Reached Mars

Newsy (Sep. 22, 2014) After a 10-month voyage through space, NASA's MAVEN spacecraft is now orbiting the Red Planet. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
SpaceX Cargo Ship Blasts Off Toward Space Station

SpaceX Cargo Ship Blasts Off Toward Space Station

AFP (Sep. 21, 2014) SpaceX's unmanned Dragon cargo ship blasts off toward the International Space Station, carrying a load of supplies and science experiments for the astronauts living there. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
NASA's MAVEN To Study Martian Atmosphere

NASA's MAVEN To Study Martian Atmosphere

Newsy (Sep. 21, 2014) NASA's Maven will soon give information that could explain what happened to Mars' atmosphere. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins