Featured Research

from universities, journals, and other organizations

A Bouquet Of Responses: Olfactory Nerve Cells Expressing Same Receptor Display A Varied Set Of Reactions

Date:
February 3, 2006
Source:
University Of Pennsylvania School Of Medicine
Summary:
In a mouse model, University of Pennsylvania School of Medicine researchers discovered that olfactory sensory neurons expressing the same receptor responded to a specific odor with an array of speeds and sensitivities, a phenomenon previously not detected in the mammalian sense of smell. The group published their findings this week in the online edition of the Proceedings of the National Academy of Sciences.

Composite of olfactory neuron response to lyral odor. The background shows intact olfactory neuroepithelium containing MOR23 cells tagged with GFP (green fluorescent protein). The right upper corner shows dendritic knob and cilia from a single MOR23 neuron. The left lower corner shows the electrical responses over time of a single MOR23 cell to lyral, the ligand for MOR23, at different concentrations.
Credit: Image Xavier Grosmaitre and Minghong Ma, PhD, University of Pennsylvania School of Medicine

In a mouse model, University of Pennsylvania School of Medicine researchers discovered that olfactory sensory neurons expressing the same receptor responded to a specific odor with an array of speeds and sensitivities, a phenomenon previously not detected in the mammalian sense of smell. The group published their findings this week in the online edition of the Proceedings of the National Academy of Sciences.

Related Articles


"We assumed that the sensory neurons that express the same receptor would respond to a specific odor in the same way," says senior author Minghong Ma, PhD, Assistant Professor of Neuroscience at Penn. "But in real biology, these olfactory neurons keep regenerating, and even though they all express the same receptor, they're probably at different states of maturation, displaying different qualities. By knowing that olfactory neurons can respond differently, we're adding another layer to understanding how the olfactory system receives outside information."

Ma's group measured 53 different olfactory neurons that express the MOR23 odor receptor. As a group, the neurons reacted differently from one another in their response to lyral, an artificial odor used in fragrances and flavoring. After subjecting all cells to a short pulse (200-300 milliseconds) of lyral, the researchers measured the cells' sensitivity to the odor. Some cells responded to very low concentrations of lyral; others, to higher concentrations. Regarding the cells' reaction time, some neurons finished firing within 500 milliseconds, but for others, the response time was up to five seconds.

Detection of odor molecules depends on about 1000 different odor receptors in the rodent nose. Different sets of receptors respond to different sets of odors. To date, no one has been able to record electrical impulses from a specific subtype of olfactory sensory neuron expressing a known receptor. This is important, says Ma, because prior to this paper, when researchers would work with olfactory cells, there was no way to know what odor receptor that cell expressed. "It could literally be one out of 1000," she says.

All the sensory neurons expressing the same receptor merge to a common region called a glomerulus, a region in the brain's olfactory bulb. In one bulb there are about 2000 glomeruli. (The brain has two olfactory bulbs.) There are thousands of sensory neurons dedicated to expressing the same receptor, and in the case of MOR23 they all merge to two glomeruli.

The researchers used genetically engineered mice that express MOR23 together with green fluorescent protein (GFP), which was generated by colleagues from Rockefeller University. The GFP allows the investigators to visualize the MOR23 cells separate from other neurons. They also recorded their measurements using cells still intact within the lining of the nose, which allows the researchers to study these cells in their natural biochemical environment.

The researchers made their measurements from the endings of olfactory neuron dendrites. A single dendrite extends from the cell body of the olfactory neuron into the nasal cavity. The dendrite has a swelling at the end called the knob, where about 10 to 15 hair-like extensions called cilia contain the odor receptors.

Ma and colleagues are now working out the implications of their findings. She says this study points to a more finely tuned response in the brain to odors than previously thought. "Olfactory neurons may be able to respond to an even wider range of odor concentrations than we realized," she says. The heterogeneity in odor sensitivity and the wide response range in single cells provides new insights into why mammals, including humans, perceive odors with unchanged quality over a broad concentration range.

###

The research was supported by grants from the National Institutes on Deafness and Other Communications Disorders and the Whitehall Foundation. Study co-authors are Xavier Grosmaitre from Penn, Anne Vassalli and Peter Mombaerts from Rockefeller University, and Gordon Shephard from Yale University.


Story Source:

The above story is based on materials provided by University Of Pennsylvania School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania School Of Medicine. "A Bouquet Of Responses: Olfactory Nerve Cells Expressing Same Receptor Display A Varied Set Of Reactions." ScienceDaily. ScienceDaily, 3 February 2006. <www.sciencedaily.com/releases/2006/02/060202181327.htm>.
University Of Pennsylvania School Of Medicine. (2006, February 3). A Bouquet Of Responses: Olfactory Nerve Cells Expressing Same Receptor Display A Varied Set Of Reactions. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2006/02/060202181327.htm
University Of Pennsylvania School Of Medicine. "A Bouquet Of Responses: Olfactory Nerve Cells Expressing Same Receptor Display A Varied Set Of Reactions." ScienceDaily. www.sciencedaily.com/releases/2006/02/060202181327.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins