Featured Research

from universities, journals, and other organizations

Interplanetary Dust Particles: Reproducing GEMS-like Structure In The Laboratory

Date:
February 16, 2006
Source:
Journal Astronomy & Astrophysics
Summary:
For the first time, a team of French scientists were able to reproduce the structure of the exotic GEMS (glass with embedded metal and sulphides) in the laboratory. The results of their experiments will soon be published in Astronomy & Astrophysics. GEMS is a major component of primitive interplanetary dust. To understand its origin is one of the primary objectives of planetary science, and especially of the recently successful Stardust mission.

Image of a GEMS in an interplanetary dust particle. (Copyright: NASA)

For the first time, a team of French scientists [1] were able to reproduce the structure of the exotic GEMS in the laboratory. The results of their experiments will soon be published in Astronomy & Astrophysics. GEMS (glass with embedded metal and sulphides) is a major component of primitive interplanetary dust. To understand its origin is one of the primary objectives of planetary science, and especially of the recently successful Stardust mission.

Related Articles


In a coming issue, Astronomy & Astrophysics presents new laboratory results that provide some important clues to the possible origins of exotic mineral grains in interplanetary dust. Studying interplanetary grains is currently a hot topic within the framework of the NASA Stardust mission, which recently brought back some samples of these grains. They are among the most primitive material ever collected. Their study will lead to a better understanding of the formation and evolution of our Solar System.

Through dedicated laboratory experiments aimed at simulating the possible evolution of cosmic materials in space, C. Davoisne and her colleagues explored the origin of the so-called GEMS (glass with embedded metal and sulphides). GEMS is a major component of the primitive interplanetary dust particles (IDPs). They are a few 100 nm in size and are composed of a silicate glass that includes small, rounded grains of iron/nickel and metal sulphide. A small fraction of the GEMS (less than 5%) have presolar composition and could therefore have an interstellar origin. The remainder have solar composition and may have been formed or processed in the early Solar System. The varied compositions of the GEMS make it difficult to arrive at a consensus regarding their origin and formation process.

The team first postulates that the GEMS precursors originated in the interstellar medium and were progressively heated in the protosolar nebula. To test the validity of this hypothesis a joint experimental project involving two French laboratories, the Laboratoire de Structure et Propriιtιs de l’Etat Solide (LSPES) in Lille and the Institut d’Astrophysique Spatiale (IAS) in Orsay, was set up. Z. Djouadi, at the IAS, heated various amorphous samples of olivine ((Mg,Fe)2SiO4) under high vacuum and at temperatures ranging from 500 to 750°C. After heating, the samples show microstructures that closely resemble those of the GEMS, with rounded iron nanograins that are seen to be embedded in a silicate glass.

This is the first time that a GEMS-like structure has been reproduced by laboratory experiments. There, they show that the iron oxide (FeO) component of the amorphous silicates has undergone a chemical reaction known as reduction, in which the iron gains electrons and releases its oxygen, to precipitate in a metallic form. Since the GEMS component in IDPs is usually closely associated with carbonaceous matter, the reaction FeO + C --> Fe + CO will be at the source of the metallic iron nanograins in these IDP’s. Such conditions may have been encountered in the primitive solar nebula. This reaction has been known of for centuries by metallurgists, but the originality of the LSPES/IAS approach is the application of material science concepts to extreme astrophysical environments.

In addition, the scientists found that, in the heated sample, practically no iron remains in the silicate glass, since all the iron has migrated into the metal grains. The team is thus able to explain why the dust observed around evolved stars and in comets is mainly composed of magnesium-rich silicates where iron is apparently lacking. Indeed, iron in metallic spherules becomes totally undetectable by the usual remote spectroscopic techniques. This work could therefore provide an important and new insight into the composition of interstellar grains as well.

The team shows that GEMS could form through a specific heating process that would affect grains of various origins. The process may be very common and could occur both in the Solar System and around other stars. The GEMS could thus have diverse origins. Scientists now eagerly await the analysis of grains collected by Stardust to find out for certain that some GEMS truly come from the interstellar medium.

###

[1] The team includes C. Davoisne, H. Leroux (from LSPES, Lille, France), Z. Djouadi, L. d'Hendecourt, A. P. Jones and D. Deboffle (from IAS, Orsay, France).


Story Source:

The above story is based on materials provided by Journal Astronomy & Astrophysics. Note: Materials may be edited for content and length.


Cite This Page:

Journal Astronomy & Astrophysics. "Interplanetary Dust Particles: Reproducing GEMS-like Structure In The Laboratory." ScienceDaily. ScienceDaily, 16 February 2006. <www.sciencedaily.com/releases/2006/02/060215230145.htm>.
Journal Astronomy & Astrophysics. (2006, February 16). Interplanetary Dust Particles: Reproducing GEMS-like Structure In The Laboratory. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2006/02/060215230145.htm
Journal Astronomy & Astrophysics. "Interplanetary Dust Particles: Reproducing GEMS-like Structure In The Laboratory." ScienceDaily. www.sciencedaily.com/releases/2006/02/060215230145.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) — Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) — Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
Why So Many People Think NASA's Asteroid Mission Is A Waste

Why So Many People Think NASA's Asteroid Mission Is A Waste

Newsy (Mar. 27, 2015) — The Asteroid Retrieval Mission announced this week bears little resemblance to its grand beginnings. Even NASA scientists are asking, "Why bother?" Video provided by Newsy
Powered by NewsLook.com
Space Station Crew Docks Safely

Space Station Crew Docks Safely

Reuters - News Video Online (Mar. 27, 2015) — NASA TV footage shows the successful docking of a Russian Soyuz craft to the International Space Station for a year-long mission. Rough cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins