Featured Research

from universities, journals, and other organizations

People Use Separate Brain Mechanisms To Make Ambiguous And Risky Choices

Date:
March 3, 2006
Source:
Duke University Medical Center
Summary:
Distinct regions of the human brain are activated when people are faced with ambiguous choices versus choices involving only risk, Duke University Medical Center researchers have discovered. The investigators found that they could predict activation of different brain areas, based on how averse study participants were toward either risk or ambiguity. The finding confirms what economists have long debated -- that different attitudes toward perceived risk and ambiguity in decision-making situations may reflect a basic distinction in brain function, the researchers said.

Distinct regions of the human brain are activated when people are faced with ambiguous choices versus choices involving only risk, Duke University Medical Center researchers have discovered. Shown here is researcher Scott Huettel, Ph.D.
Credit: Image courtesy of Duke University Medical Center

Distinct regions of the human brain are activated when people are faced with ambiguous choices versus choices involving only risk, Duke University Medical Center researchers have discovered.

Related Articles


The investigators found that they could predict activation of different brain areas, based on how averse study participants were toward either risk or ambiguity. The finding confirms what economists have long debated -- that different attitudes toward perceived risk and ambiguity in decision-making situations may reflect a basic distinction in brain function, the researchers said. Such fundamental knowledge of neural functioning will contribute to an understanding of why people make risky choices, and how such risk-taking can become pathological, as in addiction or compulsive gambling, they added.

Their study appears in the March 2, 2006 issue of Neuron. The research was supported by the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke and Duke.

"We were able to see individual differences in brain activation depending on the person's preferences or aversions to risk and ambiguity," said Scott Huettel, Ph.D., lead author and a neuroscientist with the Brain Imaging and Analysis Center at Duke University. "People who preferred ambiguity had increased activation in the prefrontal cortex, and people who preferred risk had increased activation in the parietal cortex. This opens up the possibility that there are specific neural mechanisms for different forms of economic decision making, which is a very exciting idea."

The team collected data from 13 adult participants who were asked to choose between pairs of monetary "gambles" that were predetermined to be 'certain', 'risky' or 'ambiguous'. For the risky choices, subjects were told the odds that they would win the gambles, but for the ambiguous choices, subjects were not given this information. The participants were rewarded with a cash payout based upon whether or not they won their gambles.

The team used functional magnetic resonance imaging (MRI) to determine which areas of the brain were activated while people were making risky or ambiguous choices. Functional MRI is a widely used brain imaging technique that uses harmless magnetic fields and radio waves to measure cerebral blood oxygenation, which reflects brain activity in a region. The researchers determined the subjects' preferences by examining how frequently they chose each type of gamble during the experiment.

They found that activation of specific brain regions depended on participants' preferences for risk or for ambiguity. They soon learned that the activation of an area in the lateral prefrontal cortex depended upon whether people tended to choose ambiguous gambles, while activation of an area in the posterior parietal cortex depended on whether people tended to choose risky gambles. Furthermore, whether or not a person is, by nature, impulsive appears to correlate with whether or not their brain preferred risky gambles to those that were ambiguous, the researchers said.

"Some people are impulsive, some people are not; some people think through their decisions while others don't, and sometimes this can become pathological," said Michael Platt, Ph.D., a neurobiologist and co-author of the study. "Impulsive behavior can be associated with all sorts of mental disorders like addiction or problem gambling. If it could be demonstrated that we could change the way people perceive risk and ambiguity by introducing a medication that could influence brain chemistry, someday we might be able to alleviate some types of pathological decision making."

The results provide important data for the emerging field of "neuroeconomics," Huettel added. Neuroeconomics is a relatively new area of research in which neuroscientists, economists, psychologists and psychiatrists collaborate to better understand how the brain works when people make decisions, evaluate risk, and receive rewards.

"By understanding these mechanisms, we may be able to make better predictions about how people will behave or interact in different circumstances," Huettel said.

Further, the team's results should yield new insights in economics, according to Jill Stowe, Ph.D., a decision scientist with Duke's Fuqua School of Business and co-author of the study.

"The results are exciting because they suggest that people evaluate risky and ambiguous options in different ways," she said. "That element is not currently embedded in current economic models of decision making under risk or ambiguity, so this may very well lead to better economic models in the future, as well as hold implications for future economic policy."

Huettel, Platt and Stowe are Co-Directors of the Center for Neuroeconomic Studies at Duke. Evan Gordon and Brent Warner of the Brain Imaging and Analysis Center at Duke are also authors on the study.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "People Use Separate Brain Mechanisms To Make Ambiguous And Risky Choices." ScienceDaily. ScienceDaily, 3 March 2006. <www.sciencedaily.com/releases/2006/03/060303113346.htm>.
Duke University Medical Center. (2006, March 3). People Use Separate Brain Mechanisms To Make Ambiguous And Risky Choices. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2006/03/060303113346.htm
Duke University Medical Center. "People Use Separate Brain Mechanisms To Make Ambiguous And Risky Choices." ScienceDaily. www.sciencedaily.com/releases/2006/03/060303113346.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins