Featured Research

from universities, journals, and other organizations

Researchers Find 'Switch' For Brain's Pleasure Pathway

Date:
March 22, 2006
Source:
University of Pittsburgh
Summary:
In the current issue of Proceedings of the National Academy of Sciences, Pitt professor of neuroscience, psychiatry, and psychology Anthony Grace and Pitt neuroscience research associate Daniel Lodge suggest a new mechanism for how the brain's reward system works.

Amid reports that a drug used to treat Parkinson's disease has caused some patients to become addicted to gambling and sex, University of Pittsburgh researchers have published a study that sheds light on what may have gone wrong.

Related Articles


In the current issue of Proceedings of the National Academy of Sciences, Pitt professor of neuroscience, psychiatry, and psychology Anthony Grace and Pitt neuroscience research associate Daniel Lodge suggest a new mechanism for how the brain's reward system works.

The main actor in the reward system is a chemical called dopamine. When you smell, touch, hear, see, or taste a pleasurable stimulus, the dopamine neurons in your brain start firing in bursts. So-called "burst firing" is how the brain signals reward and modulates goal-directed behavior. But just how the stimulus you perceive causes neurons to switch into or out of this mode has been a mystery.

Using anesthetized rats, Lodge and Grace found that one area in the brain stem, known as the laterodorsal tegmental nucleus, is critical to normal dopamine function.

"We've found, for the first time, the brain area that acts as the gate, telling neurons either to go into this communication mode or to stop communicating," says Grace. "All the other parts of the brain that talk to the dopamine neurons can only do it when this area puts them into the communication mode."

As a result, disruption in that area may play a major role in dopamine-related brain function, both in normal behaviors and psychiatric disorders.

The brain area identified by the Pitt researchers is regulated by the "planning" part of the brain, the prefrontal cortex (PFC), thereby providing a powerful indirect means for the PFC to affect the activity of dopamine neurons. Such a link could explain how changes in the PFC, seen in disorders like schizophrenia and drug addiction, disrupt the signaling of dopamine neurons.



Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Cite This Page:

University of Pittsburgh. "Researchers Find 'Switch' For Brain's Pleasure Pathway." ScienceDaily. ScienceDaily, 22 March 2006. <www.sciencedaily.com/releases/2006/03/060322112625.htm>.
University of Pittsburgh. (2006, March 22). Researchers Find 'Switch' For Brain's Pleasure Pathway. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/03/060322112625.htm
University of Pittsburgh. "Researchers Find 'Switch' For Brain's Pleasure Pathway." ScienceDaily. www.sciencedaily.com/releases/2006/03/060322112625.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins