Featured Research

from universities, journals, and other organizations

Cannibal Stars Like Their Food Hot, XMM-Newton Reveals

Date:
April 6, 2006
Source:
European Space Agency
Summary:
The European Space Agency's XMM-Newton has seen vast clouds of superheated gas, whirling around miniature stars and escaping from being devoured by the stars' enormous gravitational fields -- giving a new insight into the eating habits of the galaxy's 'cannibal' stars.

Artist's impression of a vast cloud of superheated gas whirling around an asteroid-sized cannibal star, part of a low-mass X-ray binary star system. The clouds, discovered by ESA's XMM-Newton space observatory, are composed of iron vapour and other chemicals at many millions of degrees and are located where the 'river' of matter from the companion star strikes the disc. The clouds periodically block the X-ray emission from the cannibal star and cause an X-ray 'blinking'.
Credit: ESA

The European Space Agency’s XMM-Newton has seen vast clouds of superheated gas, whirling around miniature stars and escaping from being devoured by the stars’ enormous gravitational fields - giving a new insight into the eating habits of the galaxy’s ‘cannibal’ stars.

The clouds of gas range in size from a few hundred thousand kilometres to a few million kilometres, ten to one hundred times larger than the Earth. They are composed of iron vapour and other chemicals at temperatures of many millions of degrees.

"This gas is extremely hot, much hotter than the outer atmosphere of the Sun," said Maria Dํaz Trigo of ESA’s European Science and Technology Research Centre (ESTEC), who led the research.
ESA’s XMM-Newton x-ray observatory made the discovery when it observed six so-called ‘low-mass X-ray binary’ stars (LMXBs). The LMXBs are pairs of stars in which one is the tiny core of a dead star.

Measuring just 15–20 kilometres across and comparable in size to an asteroid, each dead star is a tightly packed mass of neutrons containing more than 1.4 times the mass of the Sun.

Its extreme density generates a powerful gravitational field that rips gas from its ‘living’ companion star. The gas spirals around the neutron star, forming a disc, before being sucked down and crushed onto its surface, a process known as ‘accretion’.

The newly discovered clouds sit where the river of matter from the companion star strikes the disc. The extreme temperatures have ripped almost all of the electrons from the iron atoms, leaving them carrying extreme electrical charges. This process is known as ‘ionisation’.
The discovery solves a puzzle that has dogged astronomers for several decades. Certain LMXBs appear to blink on and off at X-ray wavelengths. These are ‘edge-on’ systems, in which the orbit of each gaseous disc lines up with Earth.

In previous attempts to simulate the blinking, clouds of low-temperature gas were postulated to be orbiting the neutron star, periodically blocking the X-rays. However, these models never reproduced the observed behaviour well enough.

XMM-Newton solves this by revealing the ionised iron. "It means that these clouds are much hotter than we anticipated," said Dํaz. With high-temperature clouds, the computer models now simulate much better the dipping behaviour.

Some 100 known LMXBs populate our galaxy, the Milky Way. Each one is a stellar furnace, pumping X-rays into space. They represent a small-scale model of the accretion thought to be taking place in the very heart of some galaxies. One in every ten galaxies shows some kind of intense activity at its centre.

This activity is thought to be coming from a gigantic black hole, pulling stars to pieces and devouring their remains. Being much closer to Earth, the LMXBs are easier to study than the active galaxies.

"Accretion processes are still not well understood. The more we understand about the LMXBs, the more useful they will be as analogues to help us understand the active galactic nuclei," says Dํaz.
The findings appear in Astronomy & Astrophysics (445, 179–195, 2006). The original article, ‘Spectral changes during dipping in low-mass X-ray binaries due to highly-ionized absorbers’, is by M. Dํaz Trigo and A.N. Parmar (ESA, Noordwijk, The Netherlands), L. Boirin (Observatoire Astronomique de Strasbourg, France), M. M้ndez and J.S. Kaastra (SRON, National Institute for Space Research, Utrecht, The Netherlands).


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Cannibal Stars Like Their Food Hot, XMM-Newton Reveals." ScienceDaily. ScienceDaily, 6 April 2006. <www.sciencedaily.com/releases/2006/04/060404195321.htm>.
European Space Agency. (2006, April 6). Cannibal Stars Like Their Food Hot, XMM-Newton Reveals. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2006/04/060404195321.htm
European Space Agency. "Cannibal Stars Like Their Food Hot, XMM-Newton Reveals." ScienceDaily. www.sciencedaily.com/releases/2006/04/060404195321.htm (accessed August 23, 2014).

Share This




More Space & Time News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) — Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) — Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins