Featured Research

from universities, journals, and other organizations

Brain Communicates In Analog And Digital Modes Simultaneously

Date:
April 13, 2006
Source:
Yale University
Summary:
Contrary to popular belief, brain cells use a mix of analog and digital coding at the same time to communicate efficiently, according to a study by Yale School of Medicine researchers published this week in Nature.

Contrary to popular belief, brain cells use a mix of analog and digital coding at the same time to communicate efficiently, according to a study by Yale School of Medicine researchers published this week in Nature.

This finding partially overturns a longstanding belief that each of the brain's 100 billion neurons communicate strictly by a digital code. Analog systems represent signals continuously, while digital systems represent signals in the timing of pulses. Traditionally, many human-designed circuits operate exclusively in analog or in digital modes.

"This study reveals that the brain is very sophisticated in its operation, using a code that is more efficient than previously appreciated," said David McCormick, professor in the Department of Neurobiology and senior author of the study. "This has widespread implications, not only for our basic understanding of how the brain operates, but also in our understanding of neuronal dysfunction."

"It's as if everyone thought communication in the brain was like a telegraph, but actually it turned out to be more similar to a telephone," he said.

Neurons receive input from other cells largely through synaptic contacts on their dendrites and cell bodies. The release of neurotransmitters at these synapses causes the voltage inside the cell receiving the transmitters to fluctuate continuously. Once this voltage passes a threshold, an action potential is generated. The action potential is a specialized waveform known to be able to travel down the axon, or output portion of the cell.

Due to its length and thinness, the nerve axon has been believed to be impassable to the smaller analog voltage deflections that gave rise to action potential. As this action potential reaches the synaptic terminals of the axon, it causes the release of a transmitter onto the next neurons in the chain. So, although signals in the cell body are represented in an analog fashion, they were thought to be transmitted between cells solely through the rate and timing of the action potentials that propagated down the axon, that is, in a digital fashion.

McCormick's group demonstrated that the analog signal present in the cell body also propagates down the axon and influences synaptic transmission onto other neurons. As the voltage on the sending cell becomes more positive, the amplitude of the subsequent transmission to the receiving cell, mediated by an action potential, is enhanced. This means that the waveform generated in the receiving neuron is not just determined by the digital pattern of action potentials generated, but also by the analog waveform occurring in the sending neuron.

For example, McCormick said, epileptic seizures and the aura of migraine headache both involve large changes in the voltage inside neurons. He said this study indicates that these abnormal patterns of activity may be directly communicated to nearby neurons, even in the absence of the generation of the digital code of action potential activity.

McCormick said future investigations and models of neuronal operation in the brain will need to take into account the mixed analog-digital nature of communication. Only with a thorough understanding of this mixed mode of signal transmission will a truly in depth understanding of the brain and its disorders be achieved, he said.

The first author is Yousheng Shu of Yale. Co-authors are Andrea Hasenstaub, Alvaro Duque and Yuguo Yu of Yale.

Nature: Published online April 12, 2006 (DOI 10.1038/nature04720)


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Brain Communicates In Analog And Digital Modes Simultaneously." ScienceDaily. ScienceDaily, 13 April 2006. <www.sciencedaily.com/releases/2006/04/060412223937.htm>.
Yale University. (2006, April 13). Brain Communicates In Analog And Digital Modes Simultaneously. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2006/04/060412223937.htm
Yale University. "Brain Communicates In Analog And Digital Modes Simultaneously." ScienceDaily. www.sciencedaily.com/releases/2006/04/060412223937.htm (accessed April 16, 2014).

Share This



More Mind & Brain News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Newsy (Apr. 16, 2014) A new study by British researchers suggests couples' sleeping positions might reflect their happiness. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins