Featured Research

from universities, journals, and other organizations

Quantum Paint-on Laser Could Rescue Computer Chip Industry

Date:
April 17, 2006
Source:
University of Toronto
Summary:
Researchers at the University of Toronto have created a laser that could help save the $200-billion dollar computer chip industry from a looming crisis dubbed the "interconnect bottleneck."

Researchers at the University of Toronto have created a laser that could help save the $200-billion dollar computer chip industry from a looming crisis dubbed the "interconnect bottleneck."

Related Articles


But this isn't a laser in the stereotypical sense -- no corded, clunky boxes projecting different coloured lights. In fact, Professor Ted Sargent, of the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, carries a small vial of the paint used to make this laser in his briefcase -- it looks like diluted ink.

Lasers that can produce coherent infrared light in the one to two nanometre wavelength range are essential in telecommunications, biomedical diagnosis and optical sensing. The speed and density of computer chips has risen exponentially over the years, and within 15 to 20 years the industry is expected to reach a point where components can't get any faster. But the interconnect bottleneck -- the point where microchips reach their capacity -- is expected sometime around 2010.

To tackle this problem, Sargent, a Canada Research Chair in Nanotechnology, created the new laser using colloidal quantum dots -- nanometre-sized particles of semiconductor that are suspended in a solvent like the particles in paint. "We've made a laser that can be smeared onto another material," says Sargent. "This is the first paint-on semiconductor laser to produce the invisible colours of light needed to carry information through fiber-optics. The infrared light could, in the future, be used to connect microprocessors on a silicon computer chip." A study describing the laser was published in the April 17 issue of the journal Optics Express.

According to Sjoerd Hoogland, a post-doctoral fellow and the first author of the paper, "this laser could help us to keep feeding the information-hungry Internet generation." The laser's most remarkable feature was its simplicity. "I made the laser by dipping a miniature glass tube in the paint and then drying it with a hairdryer," he said. "Once the right nanoparticles are made, the procedure takes about five minutes."

The microchip industry is looking for components that exist on the scale of transistors and are made of semiconductors, which would produce light when exposed to electrical current. With this development, it could be possible to use the electronics already found on microchips to power a laser that communicates within the chip itself.

"We crystallized precisely the size of the nanoparticles that would tune the colour of light coming from the laser. We chose nanoparticle size, and thus colour, the way a guitarist chooses frets to select the pitch of the instrument," Hoogland said. "Optical data transfer relies on light in the infrared--beams of light 1.5 micrometers in wavelength travel farthest in glass. We made our particles just the right size to generate laser light at exactly this wavelength."

Lionel C. Kimerling, Thomas Lord Professor of Materials Science and director of the Microphotonics Center at the Massachusetts Institute of Technology, reviewed the work. "The wavelength and the thermal budget of the Toronto laser are very appealing for applications in optical interconnects," Kimerling says. "The performance is excellent, particularly the temperature insensitivity of the output wavelength."

The research was funded by the Natural Sciences and Engineering Council of Canada (NSERC) under its NanoIP (Nano Innovation Platform) Initiative, the Canada Foundation for Innovation, the Province of Ontario and the Canada Research Chairs program.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University of Toronto. "Quantum Paint-on Laser Could Rescue Computer Chip Industry." ScienceDaily. ScienceDaily, 17 April 2006. <www.sciencedaily.com/releases/2006/04/060417124542.htm>.
University of Toronto. (2006, April 17). Quantum Paint-on Laser Could Rescue Computer Chip Industry. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2006/04/060417124542.htm
University of Toronto. "Quantum Paint-on Laser Could Rescue Computer Chip Industry." ScienceDaily. www.sciencedaily.com/releases/2006/04/060417124542.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins