Featured Research

from universities, journals, and other organizations

Space Observatory Digs Into The Secrets Of Fossil Galaxy Clusters

Date:
April 28, 2006
Source:
European Space Agency
Summary:
Taking advantage of the high sensitivity of the European Space Agency's XMM-Newton and the sharp vision of NASA's Chandra X-Ray space observatories, astronomers have studied the behaviour of massive fossil galaxy clusters, trying to find out how they find the time to form.

XMM-Newton observations of the fossil galaxy cluster RX J1416.5+2315, show a cloud of hot gas emitting X-rays (in blue). The cloud, reaching temperatures of about 50 million degrees, extend over 3.5 million light years and surround a giant elliptical galaxy believed to have grown to its present size by cannibalising its neighbours.
Credit: s: Khosroshahi, Maughan, Ponman, Jones, ESA, ING

Taking advantage of the high sensitivity of the European Space Agency's XMM-Newton and the sharp vision of NASA's Chandra X-Ray space observatories, astronomers have studied the behaviour of massive fossil galaxy clusters, trying to find out how they find the time to form…

Related Articles


Many galaxies reside in galaxy groups, where they experience close encounters with their neighbours and interact gravitationally with the dark matter - mass which permeates the whole intergalactic space but is not directly visible because it doesn’t emit radiation.

These interactions cause large galaxies to spiral slowly towards the centre of the group, where they can merge to form a single giant central galaxy, which progressively swallows all its neighbours.

If this process runs to completion, and no new galaxies fall into the group, then the result is an object dubbed a 'fossil group', in which almost all the stars are collected into a single giant galaxy, which sits at the centre of a group-sized dark matter halo. The presence of this halo can be inferred from the presence of extensive hot gas, which fills the gravitational potential wells of many groups and emits X-rays.


A group of international astronomers studied in detail the physical features of the most massive and hot known fossil group, with the main aim to solve a puzzle and understand the formation of massive fossils. In fact, according to simple theoretical models, they simply could not have formed in the time available to them!

The fossil group investigated, called 'RX J1416.4+2315', is dominated by a single elliptical galaxy located one and a half thousand million light years away from us, and it is 500 thousand million times more luminous than the Sun.

The XMM-Newton and Chandra X-ray observations, combined with optical and infrared analyses, revealed that group sits within a hot gas halo extending over three million light years and heated to a temperature of 50 million degrees, mainly due to shock heating as a result of gravitational collapse.

Such a high temperature, about as twice as the previously estimated values, is usually characteristic of galaxy clusters. Another interesting feature of the whole cluster system is its large mass, reaching over 300 trillion solar masses. Only about two percent of it in the form of stars in galaxies, and 15 percent in the form of hot gas emitting X-rays. The major contributor to the mass of the system is the invisible dark matter, which gravitationally binds the other components
According to calculations, a fossil cluster as massive as RX J1416.4+2315 would have not had the time to form during the whole age of the universe. The key process in the formation of such fossil groups is the process known as 'dynamical friction', whereby a large galaxy loses its orbital energy to the surrounding dark matter. This process is less effective when galaxies are moving more quickly, which they do in massive 'clusters' of galaxies.

This, in principle, sets an upper limit to the size and mass of fossil groups. The exact limits are, however, still unknown since the geometry and mass distribution of groups may differ from that assumed in simple theoretical models.

“Simple models to describe the dynamical friction assume that the merging galaxies move along circular orbits around the centre of the cluster mass“, says Habib Khosroshahi from the University of Birmingham (UK), first author of the results. “Instead, if we assume that galaxies fall towards the centre of the developing cluster in an asymmetric way, such as along a filament, the dynamic friction and so the cluster formation process may occur in a shorter time scale,” he continues. Such a hypothesis is supported by the highly elongated X-ray emission we observed in RX J1416.4+2315, to sustain the idea of a collapse along a dominant filament.”

The optical brightness of the central dominant galaxy in this fossil is similar to that of brightest galaxies in large clusters (called 'BCGs'). According to the astronomers, this implies that such galaxies could have originated in fossil groups around which the cluster builds up later. This offers an alternative mechanism for the formation of BCGs compared to the existing scenarios in which BCGs form within clusters during or after the cluster collapse.

“The study of massive fossil groups such as RX J1416.4+2315 is important to test our understanding of the formation of structure in the universe,” adds Khosroshahi. “Cosmological simulations are underway which attempt to reproduce the properties we observe, in order to understand how these extreme systems develop,” he concludes.


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Space Observatory Digs Into The Secrets Of Fossil Galaxy Clusters." ScienceDaily. ScienceDaily, 28 April 2006. <www.sciencedaily.com/releases/2006/04/060428141525.htm>.
European Space Agency. (2006, April 28). Space Observatory Digs Into The Secrets Of Fossil Galaxy Clusters. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2006/04/060428141525.htm
European Space Agency. "Space Observatory Digs Into The Secrets Of Fossil Galaxy Clusters." ScienceDaily. www.sciencedaily.com/releases/2006/04/060428141525.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Space & Time News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Geminids Meteor Shower Lights Up Skies in China

Geminids Meteor Shower Lights Up Skies in China

AFP (Dec. 16, 2014) The Geminids meteor shower lights up the skies over the Changbai Mountains in northeast China. Duration: 01:03 Video provided by AFP
Powered by NewsLook.com
Raw: Defense Satellite Launches from California

Raw: Defense Satellite Launches from California

AP (Dec. 13, 2014) A U.S. defense satellite launched from California's central coast on Friday after weather delays caused by a major storm that drenched the state. (Dec. 13) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins