Featured Research

from universities, journals, and other organizations

Protein's Potential As A Regulator Of Brain Activity Discovered

Date:
May 2, 2006
Source:
University of California - Irvine
Summary:
UC Irvine researchers have found that a protein best known for building connections between nerve cells and muscle also plays a role in controlling brain cell activity. The finding points to possible therapeutic applications in the development of new drugs for treatment of epilepsy and neurodegenerative disorders.

UC Irvine researchers have found that a protein best known for building connections between nerve cells and muscle also plays a role in controlling brain cell activity. The finding points to possible therapeutic applications in the development of new drugs for treatment of epilepsy and neurodegenerative disorders.

Martin Smith, professor of anatomy and neurobiology in the School of Medicine, and his UCI colleagues discovered that agrin -- a protein that directs synapse formation between nerve and muscle cells -- can also inhibit the function of "pumps" that control sodium and potassium levels within cells.

These pumps, called sodium-potassium ATPases -- or sodium pumps, for short -- are especially important in electrically excitable cells, where they provide the basis for electrical impulses, known as action potentials, which are responsible for muscle contraction and signaling between nerve cells in the brain. They do this by pumping sodium out of a cell and pumping potassium in, setting up an electrochemical gradient -- in a sense, turning the cell into a battery.

If this activity isn't properly moderated, uncontrollable electrical impulses can be triggered, which is one of the cellular mechanisms behind an epileptic seizure, for instance.

This is where agrin comes into action. The UCI researchers observed in laboratory tests that agrin controls the excitability of nerve cells in the brain by regulating sodium pump activity. Adding agrin caused nerve cells to fire electrical impulses uncontrollably. In turn, the researchers found that they could block these electrical impulses by introducing small fragments of agrin, which prevented the full agrin proteins from binding their sites on the sodium pump molecules and initiating action potentials.

"The ability of agrin to modulate nerve cell excitability suggests that the agrin-sodium pump interactions can be exploited as a novel therapeutic target for epilepsy and other brain disorders," Smith said.

Agrin proteins are also expressed in heart tissue, and Smith notes that sodium pump inhibitors, such as digoxin, are commonly used to treat congestive heart failure. Agrin may, therefore, have therapeutic value for the treatment of diseases affecting tissues and organs outside of the brain.

The study appears in the April 21 issue of Cell. Lutz Hilgenberg, Hailing Su, Huaiyu Gu and Diane O'Dowd of UCI collaborated on the study, which was supported by the National Institutes of Health.

UCI has filed for patents covering the use of agrin and its derivatives in treatment of epilepsy and other pathologies of the brain and as tools that could be used to screen for novel compounds that regulate sodium pump activity.


Story Source:

The above story is based on materials provided by University of California - Irvine. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Irvine. "Protein's Potential As A Regulator Of Brain Activity Discovered." ScienceDaily. ScienceDaily, 2 May 2006. <www.sciencedaily.com/releases/2006/04/060430003249.htm>.
University of California - Irvine. (2006, May 2). Protein's Potential As A Regulator Of Brain Activity Discovered. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/04/060430003249.htm
University of California - Irvine. "Protein's Potential As A Regulator Of Brain Activity Discovered." ScienceDaily. www.sciencedaily.com/releases/2006/04/060430003249.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins