Featured Research

from universities, journals, and other organizations

Laser Trapping Of Erbium May Lead To Novel Devices

Date:
April 30, 2006
Source:
National Institute of Standards and Technology
Summary:
Physicists at the National Institute of Standards and Technology (NIST) have used lasers to cool and trap erbium atoms, a "rare earth" heavy metal with unusual optical, electronic and magnetic properties. The element has such a complex energy structure that it was previously considered too wild to trap.

A purple laser beam slows erbium atoms (the purple beam traveling right to left) emerging from an oven at 1300 degrees C, in preparation for trapping and cooling. The unusual properties of erbium atoms and the new capability to trap them could lead to development of novel technologies.
Credit: NIST

Physicists at the National Institute of Standards and Technology (NIST) have used lasers to cool and trap erbium atoms, a "rare earth" heavy metal with unusual optical, electronic and magnetic properties. The element has such a complex energy structure that it was previously considered too wild to trap. The demonstration, reported in the April 14 issue of Physical Review Letters,* might lead to the development of novel nanoscale devices for telecommunications, quantum computing or fine-tuning the properties of semiconductors.

Related Articles


Laser cooling and trapping involves hitting atoms with laser beams of just the right color and configuration to cause the atoms to absorb and emit light in a way that leads to controlled loss of momentum and heat, ultimately producing a stable, nearly motionless state. Until now, the process has been possible only with atoms that switch easily between two energy levels without any possible stops in between. Erbium has over 110 energy levels between the two used in laser cooling, and thus has many ways to get "lost" in the process. NIST researchers discovered that these lost atoms actually get recycled, so trapping is possible after all.

The NIST team heated erbium to over 1300 degrees C to make a stream of atoms. Magnetic fields and six counter-propagating purple laser beams were then used to cool and trap over a million atoms in a space about 100 micrometers in diameter. As the atoms spend time in the trap, they fall into one or more of the 110 energy levels, stop responding to the lasers, and begin to diffuse out of the trap. Recycling occurs, though, because the atoms are sufficiently magnetic to be held in the vicinity by the trap's magnetic field. Eventually, many of the lurking atoms fall back to the lowest energy level that resonates with the laser light and are recaptured in the trap.

The erbium atoms can be trapped at a density that is high enough to be a good starting point for making a Bose-Einstein condensate, an unusual, very uniform state of matter used in NIST research on quantum computing. Cold trapped erbium also might be useful for producing single photons, the smallest particles of light, at wavelengths used in telecommunications. In addition, trapped erbium atoms might be used for "doping" semiconductors with small amounts of impurities to tailor their properties. Erbium--which, like other rare earth metals, retains its unique optical characteristics even when mixed with other materials--is already used in lasers, amplifiers and glazes for glasses and ceramics. Erbium salts, for example, emit pastel pink light.

* J.J. McClelland and J.L. Hanssen. 2006. Laser cooling without repumping: a magneto-optical trap for erbium atoms. Physical Review Letters. April 14.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Laser Trapping Of Erbium May Lead To Novel Devices." ScienceDaily. ScienceDaily, 30 April 2006. <www.sciencedaily.com/releases/2006/04/060430230642.htm>.
National Institute of Standards and Technology. (2006, April 30). Laser Trapping Of Erbium May Lead To Novel Devices. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2006/04/060430230642.htm
National Institute of Standards and Technology. "Laser Trapping Of Erbium May Lead To Novel Devices." ScienceDaily. www.sciencedaily.com/releases/2006/04/060430230642.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins